TMS320C6000 Optimizing Compiler v 7.3

User's Guide

I3 TExAas

INSTRUMENTS

Literature Number: SPRU187T
July 2011

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS

Contents
=T =T = 13
1 Introduction to the Software Development TOOIS ..ouiiiiiiiiiii e 17
11 Software Development TOOIS OVEIVIEWuuiiruseiiteiseersre et saterainssannsrnnes 18
1.2 (7103 O 0 4] 0] =] G @ =T 4= 19
20 R N N S 1S 25 - 1 T F- o 19
07 O 1 11 .U = 20
2 T O o491 o1 1= gl 1 (= = Lo 20
0 1 (11111 20
2 USING the C/CH+ COMPIlEr et e ettt ea s e e e e aeeens 21
21 Y 0T 1 1 =T @0 4 o1 22
2.2 INVOKING the C/CH+ COMPIIET ettt et e s e s s s e s s saan e saae e sann s sannsanesanneaannerns 22
2.3 Changing the Compiler's Behavior With OPtioNSuviiieiesiiiieeisiiie s sasinseessasnnressaannresssannneessannes 23
2.3.1 Frequently USEd OPtiONS . .uuiuseiueeisesrstssssiasesassssinns s sssstasssaatssassasansisnnssannssannes 34
2.3.2 Miscellaneous USeful OPtioNSeiiiieesiiiiiiriiit et raatse s sraaas s ssasas s saaannsssaanreeaaannnes 36
2.3.3 RUN-TIME MOUEI OPLiONS .uveiiiiineeeiseiinteesesanneessaanneessaannresseasnneessasnneesssssnneessssnnnessennnes 37
2.3.4 Selecting Target CPU Version (--silicon_version OPtion)evvveevissiriursrieiiiiiiireaeainns 38
2.3.5 Symbolic Debugging and Profiling OPtiONSeeiiiiiiiiiiiie i r i s s sanannns 38
2.3.6 SPECITYING FilEBNAMES 1.uuuiiiiiiiiesiiii e saie st aaann et saanneessaanneessaannnessaasnnnessasnnnesssnnnnes 40
2.3.7 Changing How the Compiler Interprets FIleNamesovueivieeiiiiiiiii i raes 40
2.3.8 Changing How the Compiler Processes C FileSuueiiiiiiiiiiiiiiiii i i sananees 41
2.3.9 Changing How the Compiler Interprets and Names EXtENSIONSvveriiiinreriisineerrsssnneesssnnnness 41
P22 T80 O S o T= o 1 1T T 0= o1 (o = 41
B2 0 o R X1~ o o] 1= G T o 1T L 42
b2 0 7)Y/ o - o] (o I 124 o 43
P2 J00 N I 1= o = To%= (=T o [o] (0] L 44
2.4 Controlling the Compiler Through Environment VariableScoiiiiiiiiiiiiiii i i anianes 44
2.4.1 Setting Default Compiler Options (C6X_C_OPTION) ..iiiiiieeeiriiinteersaannresiaanneesssannnessssnnneess 44
2.4.2 Naming an Alternate Directory (CEX_C_DIR) ..uuiiutiriutirintiiiseiiinsrasssianerissiainsrasssnnsraneas 45
25 L =ToloTaqT o)1 =To I 1= To L= ST U T o] o o] o (P 46
2.5.1 Automatic Precompiled HEAAErcviiieeeiiiiiii s i it sssee e e s s anee s ssannee s sannneesaannnnesannnnnes 46
2.5.2 Manual Precompiled HEAOErciuueiieiiiiiiriira s s s s s nes 46
2.5.3 Additional Precompiled Header OPtiONSv.ueeeiiiiieiiniieesiaasrs s ssassssssaassesssaannssaaannness 46
2.6 (Ofe] gl (o] | TaTe IRt gL od =] 0] {0t =T o] P a7
2.6.1 Predefined Macro NAIMES ...uiuuiiisiiiiiiteiira e st sia s sa s s s saar e aanns 47
2.6.2 The Search Path for #inClude FileSeeiiiiii i s arnnes 48
2.6.3 Generating a Preprocessed Listing File (--preproc_only Option) ...cceveviiiieeeriirineeersainneeresnnnnes 49
2.6.4 Continuing Compilation After Preprocessing (--preproc_with_compile Option)cvvvevviiniinenn. 49
2.6.5 Generating a Preprocessed Listing File With Comments (--preproc_with_comment Option) 49
2.6.6 Generating a Preprocessed Listing File With Line-Control Information (--preproc_with_line
L 0] 110 1) 49
2.6.7 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)cvvueees 50
2.6.8 Generating a List of Files Included With the #include Directive (--preproc_includes Option) 50
2.6.9 Generating a List of Macros in a File (--preproc_macros OpPtioN) «...uevvveeirseisieeriissrirerieiainess 50
2.7 Understanding DiagnOStIC MESSA0ES . .uuueiiuuteiiiiteeiraintessaaantsessaansassiaastestaaansesiaaannsssssannnes 50
2.7.1 CoNntrolling DiagNOStICS uuureriisuseesssasneessassneesssaanneessaanneessesnsnesssssnnesssssnnnesssssnneesssnnnes 51
SPRU187T—-July 2011 Contents 3

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com
2.7.2 How You Can Use Diagnostic SUpPression OPLiONS ...u.iivseiiesristsrinrerinsiainrransssinnerasiainnss 52
2.8 (011 g 1= AV 1= STST= Vo =P 53
2.9 Generating Cross-Reference Listing Information (--gen_acp_xref Option)evvviiiiiiiiiiiieiiiiiiinnnns 53
2.10 Generating a Raw Listing File (--gen_acp_raw OPtiON) ...cueeieeeiriureriseiniesiaerireinssissiaiessannsraneans 53
2.11 Using INline FUNCLON EXPANSION 1.uuuuueeiiiiieeisaaiatesssaaassessaaasas s saansn st saannnessaannnsssaannneessannnsessnn 54
P22 0 R 1o T T To T T ST (o @ 0T (] 55
2.11.2 AULOMALIC INTINING 1ttt e e e et e s s r s e s n e e s r e 55
2.11.3 Unguarded Definition-Controlled INININGeeeiii e r e 55
2.11.4 Guarded Inlining and the _INLINE Preprocessor SYMbDOluviiiiiiiiiiiiiiiiiiiiiniiieenninnns 55
P22 15 S T 1o 111 T TN == (o 1T) 57
2.12 Interrupt Flexibility Options (--interrupt_threshold OPtion)cviiieiiiiiiii i aaeee e 57
2.13 Linking C6400 Code With C6200/C6700/Older C6400 ObJeCt COUE ..vuvirrririrsirnriinernerininnrrieranerniaes 58
B2 1 U 11 oo 11 (T] 58
2.15 Controlling Application BiNary INTErfaceeeiiiiiiiiiiii it r e srr e raaaan e e raann e e ssannnneens 60
2.16 Enabling Entry Hook and Exit HOOK FUNCHONSuuuueiiiiiiiieiiiies i s s s e s sssinn s s ssannneenas 61
OPLIMIZING YOUT GO 1ttt et et et e e et et e e et a e e e et e e e e e e e e aananens 63
3.1 LAY o @ o1 1T 1o o 64
3.2 Optimizing Software PIPelininNgeeiiiisiiiiii i s s ra i n s s aa e anannes 65
3.2.1 Turn Off Software Pipelining (--disable_software_pipelining Option)viivieeiiiiieeriiiineesrannns 66
3.2.2 Software Pipelining INfOrmMationuvieeiiiiiir i 66
3.2.3 Collapsing Prologs and Epilogs for Improved Performance and Code Sizecccevviiiiiiiininnnns 71
3.3 =T 0T To F=) 10T o L= 74
3.4 Utilizing the Loop Buffer Using SPLOOP on C6400+, C6740, and CB600ioveerrriinnnrerirnannnersannnness 75
3.5 Reducing Code Size (--opt_for_space (0r -MS) OPLtiON) ...uuueeeiiiieneiiiiieeiaairresaairnressraansassraannnesss 75
3.6 Performing File-Level Optimization (--0pt_level=3 OPtioN)cviiiiieeiiiii i rreinnre s ssannneessannneess 76
3.6.1 Controlling File-Level Optimization (--std_lib_func_def Options)ccvvvevviiiiiiiiiiiiiiiiiiaens 76
3.6.2 Creating an Optimization Information File (--gen_opt_info Option)ccoeeviiiiiiiiiiiiiiiiiees 76
3.7 Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options) 77
3.7.1 Controlling Program-Level Optimization (--call_assumptions Option)oeevvieeiiireiirerneiiinnns 77
3.7.2 Optimization Considerations When Mixing C/C++ and ASSEMDIYcccviiiiiiiiiiiiiiiiiiieeianeens 78
3.8 Using Feedback Directed OptiMiZationcuiieieeesiseieesseianneessaaneressaanseesseansnesssssnnessssssneesssnnnnes 79
3.8.1 Feedback Directed OptimMIZAtiONeivueeissseiieerisris s sareraeeaanns 79
TS 7 o o) 1 [T B = = I 1= o o Lo = 81
3.8.3 Feedback Directed Optimization APluiiiiiiiiiiiii s se s ea s e s sanneessaannneraannns 82
3.8.4 Feedback Directed Optimization SUMMAIY ...iuueeriseirisrimseianerasssrisreriseisisaarssanrerasaainns 82
3.9 Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage 83
3.9.1 Background and MOtIVAtIONieeesieisessseineeessaanseessaanneessaanneessasnnnessssnnnesssssnneessnnnns 83
BT T O o o [T 001V =T o 84
3.9.3 What Performance Improvements Can YOou EXPECt t0 SEE?viiiiieiiiiiiiiiriiiiiiieiiiinnesiaannns 85
3.9.4 Program Cache Layout Related Features and CapabilitieSiiiiieiiiiiiiiiiiiiiie s iiieerrans 85
3.9.5 Program Instruction Cache Layout Development FIOWc.ovveiiiiieiiiiiriiiinirine e 86
3.9.6 Comma-Separated Values (CSV) Files with Weighted Call Graph (WCG) Information 89
3.9.7 Linker Command File Operator - UNOrdered()eeeveeeeeeessssneeessssneeessssnneesssssnnesssssnneesssnnnes 89
3.9.8 Things TO Be AWAre Of ...uuiiiiiiiiiiiiiii i e s s r s e e anns 92
3.10 Indicating Whether Certain Aliasing Techniques Are USEdcciiiiiiiiiiiiiiiiiiaiie i ssaannseeas 93
3.10.1 Use the --aliased_variables Option When Certain Aliases are Usedcccevvviiiiieriiiinneeninnnns 93
3.10.2 Use the --no_bad_aliases Option to Indicate That These Techniques Are Not Used 93
3.10.3 Using the --no_bad_aliases Option With the Assembly Optimizerccceviiiiiiiiiiiiiiiciiees 95
3.11 Prevent Reordering of Associative Floating-Point Operationsoceeeevrsireeriiseeerrrssneesrasinneessssnnes 95
3.12 Use Caution With asm Statements in Optimized COUE ...iuviiieiiriieiii i arnes 96
3.13 Automatic Inline Expansion (--auto_inling OPtiON)uviieieeiriieieeiiiiiessiaiesssaiiaesssaaaanesssaannresas 96
3.14 Using the Interlist Feature With OptimiZationiiiiieeeiiiiiesssir s sasnree s raanreessasnneessaannnessaannnees 97
3.15 Debugging and Profiling Optimized COOEiveiiiuiiiiiiiii i aanes 99
Contents SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com
3.15.1 Debugging Optimized Code (--symdebug:dwarf, --symdebug:coff, and --opt_level Options) 99
3.15.2 Profiling OptiMIiZed COOE ...t r s r s e e s saaa e e st sanne s saaannnesaaanresaaannnes 99
3.16 Controlling Code Size VEIrSUS SPEEA ..uuuiiiiuiieiiiitesisatessiaisessssisessasainnssasaansnsssaansresssannns 100
3.17 What Kind of Optimization IS Being Performed?oeiiiuiiiiiiiiiininiis s ssnsenanes 101
3.17.1 Cost-Based Register AllOCAtIONi..eeeiiiiiieeiiiiae st e s e ssaans e s arannessaannneeaaannnes 101
3.17.2 Alias DiSambigUAaLIONueeiiiseesiiiieeeissistesssaatesssaastes s saasssesaaaanssasannssssaannressaannes 101
3.17.3 Branch Optimizations and Control-Flow Simplificationccvviiiiiiiiiiiiii e 102
3.17.4 Data FIOW OPtMIZAtIONS ...iuueeeeiiiiieeeiaaieeessaaet e s saaante s sraanresssaanneesaaannesaaannnesssannnes 102
3.17.5 EXpression SIMpHfiCAtION ...iveuueeeiiiiieiiiiirii e raies s s s s sraannr e aaannes 102
3.17.6 Inline EXpansion Of FUNCHONSuuiiiueiritiiesirte it s sras e e raasssa s ssassann s saneasnnss 102
3.17.7 Function SYMDOI AlIASING «euuueiuseiiseiriairse i a s 102
3.17.8 Induction Variables and Strength RedUCLIONivueeiiiiiiiiiiii i i s inees 103
3.17.9 Loop-Invariant Code MOLIONiueeiiseirieirie et rar e ss s saa s raanaaness 103
B 0 0 0 T I T o J L] = U1 T 103
3.17.11 INStruction SChEAUIING ..uviiiieeiiiii i s r e s s e s as e s ssaann e asannes 103
3.17.12 RegiSter Variablesuiuiiiieiiiieiiiii i e 103
3.17.13 Register TraCKing/TargeliNg ...uuueeieueeriueerisrirseiaeerassriare s 103
3.17.14 Software PIPeliNingeeeiiiuueeiiiieeiiniieessssiee s saaste s ssasressaaisessaaanreaaaannes 103
4 Using the AsSSembIly OptimizZer ..o et e e aeens 105
4.1 Code Development Flow to Increase PerformanCe ...io.vivieiiiiiiiiieiini i 106
4.2 About the ASSEMDIY OPtIMIZEr ...t e e s r s s s a i r e s s s anna e s sannnnenss 107
4.3 What You Need to Know to Write Linear ASSEMDBIYeiiiiiiii i i s s s rnr e e s nnnneee e 108
4.3.1 Linear Assembly Source Statement FOrMALueiiieeiieirie i raas 109
4.3.2 Register Specification for Linear ASSEMDIYueeiiiiii i i 110
4.3.3 Functional Unit Specification for Linear ASSEMDIYueiiiiiii i i rannree s saaneesannns 112
4.3.4 Using Linear Assembly SOUrce COMIMENTS ..uuuueirurirneinteiiserintsrinssanseiainerarssissanneianes 112
4.3.5 Assembly File Retains Your Symbolic Register Namescccceiiiiiiiiiiiiiiiiiiiiiee e 113
4.4 ASSEMDBIY OPtIMIZEr DIFECIVES +etiiieeeiteianteessaanteessaanneessaaneessaasnneesessnnnessssanneessssnnnesssnnnnesss 114
4.4.1 Instructions That Are Not Allowed in ProCeAUIESvvieiiiiieiiiiiiiiii s rnneaaes 128
45 Avoiding Memory Bank Conflicts With the Assembly Optimizerooviiiiiiiiiiiiiii e 129
4.5.1 Preventing Memory Bank ConfliCtS ...viiiueeeiiiiiieiiiii i ssinnresssanneesssannseessannnnessnnns 130
4.5.2 A Dot Product Example That Avoids Memory Bank ConflictSccvvvieiiiiiiiiiiiiiiiiiiias 131
4.5.3 Memory Bank Conflicts for Indexed POINtErSueiiiiiiiiiiiiiiiiiie i rriaes s raaans s 134
4.5.4 Memory Bank Conflict Algorithmcoiiii i i s s e e s e s rannneeaanas 135
4.6 Memory Alias DiSAmMDIQUALION ...uuueiseeieeiriire e e r e s s e 135
4.6.1 How the Assembly Optimizer Handles Memory References (Default)covvviiiiiiiiiiiinninnnn 135
4.6.2 Using the --no_bad_aliases Option to Handle Memory ReferenCescivevvvviiiiieeriiinneeninnnns 135
4.6.3 Using the .N0_MAEP DiIr€CHVE . .uuiiuutiiiseiiteiieeris s st ss s ras s raneaaans 135
4.6.4 Using the .mdep Directive to Identify Specific Memory Dependenciesccvviivirriiiinnneiinnnns 136
4.6.5 Memory AlIaS EXAMPIES .uuvreiiiirneesiianeesssasnneesaasnneesssanneeseaannesssaanneessssnsnesssssnneessnns 137
5 LinKing C/C++ COAE ..ivuiiiiiiiiiiiiiiii et a e e e 139
5.1 Invoking the Linker Through the Compiler (-2 OPLiON)eeieiiii i r s e e raanneeeas 140
5.1.1 Invoking the Linker Separatelycoioeeiiiiiemiiiiiiiiii i s sssie s sssannssasannes 140
5.1.2 Invoking the Linker as Part of the Compile StePvvviiiiiiiiiiii i e 141
5.1.3 Disabling the Linker (--compile_only Compiler Option)eeeeeiiiiieeiiiieeiaaieeesaaainneeaaanness 141
5.2 Linker Code OptiMIZAtiONSueesisuseesisaeeessaeresssastesssaasestsaassessaaanessssannnssssannnnsssannnnesss 142
5.2.1 Generating Function Subsections (--gen_func_subsections Compiler Option)ccvoveviiueinnnnns 142
V2 ©1o] (o 1110 F= 1IN 01T 142
5.3 Controlling the LiNKING PrOCESS . ..uuteiiietssiiiisesiaisss st sssaiasssssainsssssaaastesssanssesssannnsssnnns 142
5.3.1 Including the RUN-Time-Support LIDraryovveeiiiieiiiiiii i s e e e aes 143
5.3.2 RUN-TIME INItIAliIZAON 1ttuutiiseiriseii i s s n e e ranees 144
TR S B €1 (o] o T= 1@ o] [T ox S O o 111 11 [ox (o] £ 144
5.3.4 Specifying the Type of Global Variable Initializationccoveiiiiiiiiii e 145
SPRU187T—-July 2011 Contents 5

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com
5.3.5 Specifying Where to Allocate Sections in MEMOIY ...ivueiiietiiieeiiiteiiie i areraeaaness 145
5.3.6 A Sample Linker Command Fileiiieiiiiiiiiiiii i s 147
TMS320C6000C/C++ Language Implementationoocoeieiiieiii et e e ee s 149
6.1 Characteristics 0f TMS320CB6000 € ..uuuuiuserueiusiseraeiseraersiaseresassrrrassssrarrassrerararaasrreras 150
6.2 Characteristics of TMS320CB000 CH+ .uuuuuutiruseinnnerassessnsrise e rasr s tainsrasarrasians 150
6.3 USING MISRA-C:2004 .. .uiutiutiseiat et s e st sas e s s s e s s e s st s s s et e s s s et n s s e s et a s sesananns 151
6.4 DAL TY DS tuuuusnnnnnnnnnnnnssnnneeeessssssssssssssssssnsnnnns 152
6.5 [R50 (0L 153
(70 R I L= o0 T) A = Y10 (o 153
6.5.2 The Cregister KEYWOITcciiiiieeesreeieeerssineessaanresssannnesssannneessasnnnessssnnnessssnnneessnnnnes 153
6.5.3 The iNterrupt KEYWOITuuuiiseirseiie it r s s r e s s s e s n e ran e ranes 155
6.5.4 The near and far KEYWOIASueeiiiiieiiiiiieiraits s e s s raasae st saaan e s asaan s s aannnessaaannes 155
6.5.5 The restriCt KEYWOIA . ..uuueieiiiiie s seeie e ses it e ssanee e ssanneessanneessaannnessasnnnessennnnressnnnnes 156
6.5.6 The volatile KeYWOIduiiiieiiiieiiiii i st s s e aanes 157
6.6 (O3 (o =T o[T = T | 1T N 157
6.7 Register Variables and ParameterSciiiiiieesieiitessianstesssasnnesssaanneessassneessassnresssssnneessennnnesss 158
6.8 I ST TS 4 TS = 1= 0 1T o 158
6.9 [=T g F= T DT =T 1)Y= 159
6.9.1 The CHECK_MISRA PragMma ..uueeeieeiueeesseineesseanneesssannnesssesnneessssnnnesssssnnesssssnnnesssnnnes 160
LT T2 I 1= T O I [=T o 160
6.9.3 The CODE_SECTION PragiMauueeiuesssssssunemssrusisersssissansrssissasinsiansrinsansaniisamns 160
6.9.4 The DATA _ALIGN PragMa «.iieeeeeieeineeersaineesesaneesssannneessesnnsesssssnnesssssnnesssssnnnesssnnnes 162
6.9.5 The DATA_MEM_BANK Pragma ..ieeieeiiieeriiiiintiieiisesissassaassassasssnssassasssnnsnnssnssnnsns 163
6.9.6 The DATA_SECTION PragMa ...ueiueeserusissrnesninntississsssassasinssassssinssassaniasrisinins 164
6.9.7 The DiagnostiC MeSSAge Pragmas ...cueeiiieiieierieietessaantesssansnesssasnseessssnnnessssnnneessnnnnes 165
6.9.8 The FUNC_ALWAYS_INLINE PragMaccceeiueiieertieennesnnranssnsiasssnssnnsasssirsnnsanssnesansns 165
6.9.9 The FUNC_CANNOT_INLINE Pragma ...oeveeeiueesserusiismnnesiniinereiinsassnniissriesnniansiinsanans 166
6.9.10 The FUNC_EXT_CALLED Pragmaceeieeieeeesissneeessannneessasnneesssssnnesssssnneessssnnnessennnes 166
6.9.11 The FUNC_INTERRUPT_THRESHOLD Pragmaiceceeesiessssruesiessnrrnsiaessnrsmnmmnssnnsmnens 167
6.9.12 The FUNC_IS PURE PragMaiceeiueisistiueinsertiserss s 167
6.9.13 The FUNC_IS_SYSTEM Pragma «.uucueeeieeieeesssaneesssannsesssasnneesssssnnesssssnnesssssnnnessennnes 168
6.9.14 The FUNC_NEVER_RETURNS Pragmaciueiieesueieeneernrinnsrnssansanssnsiasssssnnsansinnsanens 168
6.9.15 The FUNC_NO_GLOBAL_ASG Pragmaciueeisssusisrisesinsansrneinnsansrsinsssissnniasiisanans 168
6.9.16 The FUNC_NO _IND_ASG PragMma ..ueeeeeeeeeeesssnneeessssnmesssssnneesssssnnesssssnnesssssnnnesmmnnnes 169
6.9.17 The FUNCTION_OPTIONS Pragma ...cveiesiuesesrutiesneesnnsnnsansiansanssnssnsssassnnmsssnnsnnenns 169
6.9.18 The INTERRUPT Pragma ..ooueiueieeiueisiseiueissrtissnsssssasssassassasssiasssiesassansinnsanenns 169
6.9.19 The MUST _ITERATE Pragma ..uceieeieeeseeianeeessanneeessaanneessesnneesssssnnesssssnnsessssnnnesssnnnes 170
6.9.20 The NMI_INTERRUPT Pragma ...ieeiueieiesieiesatieeasssassansanssansanssnssnsssnssnnmansinnsnnsns 171
6.9.21 The NO_HOOKS PragMa ..uuueiueiuseruesusissiuesssrsissnsssissassssiassanssnsianssiesnniasisanmns 171
6.9.22 The PROB_ITERATE PragmMa ..uceiieieeesessanseeseanneeessasnneessssnnnesssssnnesssssnneessssnnnessennnes 172
6.9.23 The RESET_MISRA PragMa ..oueiueeiueiueiasiesnsantiassasssansassanssansanssnssasssnssnnmmnsinnsansnns 172
6.9.24 The RETAIN Pragma . ..eeeiiiiieiiiiiiieisaissssaats s ssaaasss s saaaasssssaasssasannnssssannnnesssnnnns 172
6.9.25 The SET_CODE_SECTION and SET_DATA_SECTION Pragmascevuerveerserieisnerneiinernas 173
6.9.26 The STRUCT_ALIGN Pragma ...ciceeieieiseieinsertieerassatsanssssasssssassasssnrsansanssnnssnsns 174
6.9.27 The UNROLL Pragma . ..eeeiieeeiiiiieeinaietsssaastesssassssssaassssssaanssssssanssssssannnsssssnnnes 174
6.10 The _Pragma OPEIatir ..uueeeseeseeessassseessasnnesssaanneessaanneessesnnnessessnneessssnneesesssnneessssnneessssnnns 175
6.11 Application Binary INTEIACEuuieiiiieiiiiiiii i s s 176
B.11.1 CORFF ABI 1iutiitiiutitiatiteast st st st e e s st e e s et e e aas 176
B.11.2 EABI 1ttt et 176
6.12 Object File Symbol Naming Conventions (LINKNGMES) ...uuueiieiiiutiiiiriiiiiissiaerasssinnssaneaanes 176
6.13 Initializing Static and Global Variables in COFF ABI MOUEciiiiiiiiiiiiieiiiiiie e iriiinessnainneesnanes 177
6.13.1 Initializing Static and Global Variables With the Linkercccviiiiiiiiiiiiieiiiie s e nneees 177
6.13.2 Initializing Static and Global Variables With the const Type Qualifierccvvvviiiiiiiiiiinn., 177
Contents SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com
6.14 Changing the ANSI/ISO C Language MOuiieiiiteiiteiieeriterinsisiassass st ansssasrssinssansesanes 178
6.14.1 Compatibility With K&R C (--kr_compatible Option)ccevvieiiiiiiiiiiiii i 178
6.14.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and --relaxed_ansi
L o] 170) 179
6.14.3 Enabling Embedded C++ Mode (--embedded_cpp OptioN)vvveeeeiiiiiieiiiiiieriaianreeaanees 180
6.15 GNU Language EXIENSIONS . ..uuuetetiiustesirnunesisasses s sssassesssaasssessaasstestsassnestsssnnnsssssnnnns 180
S0 L T80 O 4 (= 1 (o) 180
6.15.2 FUNCHON AtHDULES .ttt e s r e e s s e e s sa e e s asann e s sannn e e s aannns 181
6.15.3 Variable AtMDULES .ottt r et s et as e s a s raares 182
LT R Y/ 0T N 1] o= 182
6.15.5 BUIIt-IN FUNCHONS 1ttt ittt et e st e s s r e e s ssann e s s sanne st aaannn e s annnneaaaannnns 182
7 RUN-TIME ENVIFONMENT L. e ittt ettt et e et e et e a e e e e raea e et e en e eenaeanananens 183
7.1 V1= 0 0 o] Y20 1Y o o 1= S 184
05 0 T = o o 184
7.1.2 C/CH+ SYSIEIM SEACK 1. uueiiiiiiiiieiiiite i as it e s s s re s sr st e st aaas e st aaaan s s saaannnssannnnnes 185
7.1.3 Dynamic Memory AlIOCAtIONueeiiiiieesiesieeessaseeessaantessaannnesssasnneessasnnnesssannneessnnnnes 186
7.1.4 Initialization of Variables in COFF ABI ... rr st e s e sananne e s snann e saannnes 186
4% ST B = = 1 =T 4TV 1/ o T 1= 186
7.1.6 Trampoline Generation for FUNCHON CallSeiviiiiiiiiiiiiii i re e saanee e sennnneeaanannes 187
7.1.7 PoOSItion INAePeNndent DAtAuueiueeiiseirsiraesase et ra s rara e 188
7.2 (O] o] 1=Tox L= o] £ ==) =1 (o] o I N 189
N R B T 1= B I8/ 01T (0] r= o = 189
A7 =11 1= o [195
7S T O F= = Toa (] g 1o [O o] 3 T £ 196
7.3 REQISIEI CONVENTIONS . .uttettseesseanneessasnneessaannresseannnesssanneessssnnnessssnnnesssssnnmessssnnnesssnnnnesss 197
7.4 Function Structure and Calling CONVENLIONS ..uiuuutiieeiiteiarie s aaneens 198
7.4.1 How a Function Makes @ Calloiiiieiiiiiiiiiiiii i r e s r e r e ranns 198
7.4.2 How a Called FUNCLION RESPONAS +.uuuueiiiiiiiiiesieiinteessanneeessannneessasnnnessasnnneessssnnnessennnes 199
7.4.3 Accessing Arguments and Local Variablesc.cvvvueiiiiiiiiii i 200
7.5 Interfacing C and C++ With ASsembly LangUageoooeiiiiiiiiniiiii i s araannneenas 201
7.5.1 Using Assembly Language Modules With C/C++ COUEcuviiiiiiniieiiiinieeriiiineessaainneesannnnees 201
7.5.2 Accessing Assembly Language Variables From C/CH+uiiiiiiiiiiiiiiii i s rnnannees 203
7.5.3 Sharing C/C++ Header Files With ASSEMDIY SOUICE ...vinueiiiiiii i 204
7.5.4 Using Inline ASSembBIlY LanNQUAGE ...iiveeeiiiiiteeriaieeessaaneesssannnesssssnnesssasnneessssnnnesssnnnnes 205
7.5.5 Using Intrinsics to Access Assembly Language Statementsevvveiirerissisierinieiinians 205
7.5.6 The _ X128 t CONAINET TYPB uuuteiiiunteeiniintessaantessaaantasssaassesssaananssasasnnsssaaanneessannnes 222
7.5.7 The __float2 t CoNtaiNer TY P uureiiieueesraaineeesaaanneessaanneesssannresssasnnesssssnnnessssnnnessssnnnes 223
7.5.8 Using Intrinsics for Interrupt Control and AtOMIC SECHONSvviiiiiiiiiiiii i raaaneees 224
7.5.9 Using Unaligned Data and 64-Bit ValUEScciiiiiiiiiiiiiiiiiie i iaaise s ssninnessannnness 224
7.5.10 Using MUST_ITERATE and _nassert to Enable SIMD and Expand Compiler Knowledge of
000 225
4570 R 1= 1 g To o Ko (o A [T [T = 226
7.5.12 SAT Bit Side EffECES uuuuiiutiisiiuiiirsiiii s s 228
7.5.13 IRP and AMR CONVENTIONS +.uuuuteiiianeesaainneesaaanneessaannesssaanneessaanneessaannnesssannneesssnnnes 229
7.5.14 Floating Point Control Register Side EffeCtSoviieiiiiiiiii s 229
7.6 (L1 0= U o] F= 1 o |1 T 229
7.6.1 SaViNG the SGIE Bit tuueiietiiseiineiierassis st ra e s n e e s s s n s aa e san e ranasnns 229
7.6.2 Saving Registers DUMNG INtEITUPLS . .uuueeiiiiieteiriiite s ssate s s sasaessssaanesssannssaannnnessaannnes 229
7.6.3 Using C/C++ INtErrUPt ROULINES . uveiiiiieeeiesianteeseasneesssaanneessasnneessassnnesssssnneessssnnnessennnes 230
7.6.4 Using Assembly Language INterrupt ROULINES ...vvuueiiiseirissiieeiis i ssnesannssans 231
7.7 Run-Time-Support Arithmetic ROULINES it r e s s raana e s raanneeas 231
7.8 SYStEM INItAIIZATION .+ttt i et e s s e ae e s sa s e e e s saanneessaannnessaannnesssannnesssannnnessnnnnnesssnnnnes 233
7.8.1 COFF ABI Automatic Initialization of Variablescoeeviiiiiiiiiiii e 233
7.8.2 Autoinitialization of Variables at RUN TiMeoiiiiiiiiiiiiii i i s rnanns 234
SPRU187T-July 2011 Contents 7

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com
7.8.3 Initialization of Variables at Load TiMe ...cuuivieeiiiieiiiii i s s raneaanes 234
7.8.4 EABI Automatic Initialization of Variablescoiiiiiiiiiii s 235
7.8.5 Initialization TabIesS ...i.ueeeii i s 240
7.8.6 GlODAl CONSITUCIONS +uuuueseessseneessaaneesssaaneeessannnessaannnessaannnessaannnesssasnneesssnnnnesssnnnes 243
Using Run-Time-Support Functions and Building Librariescocoiiiiiiiiiiiies 245
8.1 C and C++ RUN-Time SUPPOrt LIDrarieseeuioieeeiiiiie i r it s r s s s saansn e s snaaneaanaas 246
8.1.1 Linking Code With the Object LIbraryiiieeeeiiiiiiiiiiii s sninee s ssannee s snnnnneesannnnes 246
S 2 o 1= = o =T gl 1= 247
8.1.3 Modifying a Library FUNCHONeeiiiiiiii it s s e s s e s s e s ss e e s aanns 247
8.1.4 Changes to the Run-Time-Support LIBrariesciieeeeiiiiiiii i rciie e sssine e ssnnnneeannnees 247
8.1.5 Library Naming CONVENTIONS 1.uuuuseiussiusesase s saase s ssiss st sassssansiannssannes 248
8.2 I ST O @ I U o o] N 249
8.2.1 High-LeVel I/O FUNCHONS ..uiiiiiieiiiiiiesesianteessaneeessannneessaanneessaannnessasnnneessnnnnnessennnes 249
8.2.2 Overview of Low-Level /O Implementationceevieirieiiiieiiiiirisis e 251
8.2.3 Device-Driver Level I/O FUNCHONSuuueteiiiiieteiiiatssisiaasas s ssassssssaasesssaannssssaanneessannnes 254
8.2.4 Adding a User-Defined Device Driver for C 1/O ..uiiiiieiiiiiiii i isie e sseinneessnnnnnessannnnes 258
8.2.5 The dEVICE PrefiX «uueeiiiiiiiiieii i ie i e e e s et e s sa e e s ss e s e s saannn e e sannnneraaannneesaannes 259
8.3 Handling Reentrancy (_register_lock() and _register_unlock() FUNCLIONS)vieiiiiiiiiiiiiiii e 261
8.4 CB700 FasStMath Libraryueeeiiiieeesiiiessssiaeesssssnneessasnneessaannesssaanneessasnnnessssnnnesssssnneessnns 262
8.5 [o = 1Y = U] o= 262
8.5.1 Required Non-Texas INStrumMeNts SOftWAIEciviiieiiiiiiiiriir i aaannes 262
8.5.2 Using the Library-Build PrOCESS ..uuuiiiietesssianteessasntesssaanneessasnneessassnnesssssnneessssnnressennnes 263
L% N F= T = L= 4= o T | = PP 265
9.1 INVOKing the C++ Name DemMangIer . ..o rraae et ra e e s s e s s asanr e e saanraessaannnessn 266
9.2 C++ Name Demangler OPLiONSueeiirieteeiriseesiaissee st ssaaiessssaiasressaasstestsaassssssassnnsssnns 266
9.3 Sample Usage of the C++ Name Demanglerocveeiieiriiiiiiiiiiiri i rars s sraaeaanes 267
L[0T 7 PPN 269
Contents SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. TMS320C6000 Software Development FIOWueiieiriiiiiseiiieii i rsie s saneaans 18
B O T 11172 V= T o 7= 1 =T o 1 Yo o 65
4-1. 4-Bank INterleaved MEMOTYue ittt sa s s s s s st n e s e s st s sas e saa e sanesaneeras 129
4-2. 4-Bank Interleaved Memory With TWO MeMOIY SPACESuueteiiiiiteriiaanteriraaneessaaanneesaaannrssaaannnes 129
7-1. Char and Short Data StOrage FOMMAL ... ueeeeiriieressiisse st ssaasssssaianssssaannressaanssessaannnesss 190
I V- 2 T =Y S (o] =T [N 0] 4= 191
7-3. Single-Precision Floating-Point Char Data Storage FOrMat.......cvvieeiiiserissirinririneiiiirinrineiaaes 191
7-4. 40-Bit Data Storage Format Signed __int40_t or 40-Dit IONg...vviiueeiiiiiiiiii e 192
7-5. Unsigned 40-bit _ iNtA0_t OF IONQ .utiuuueiiteiieiiieri s a s s s s s aareaaaes 192
7-6. 64-Bit Data Storage Format Signed 64-Dit IONg.....uriveeiiieeiiiii i i 193
L I ¥ 1 1T T 1= To 7 o 1 o] oo 193
7-8. Double-Precision Floating-Point Data Storage FOrmMatevvveiiiiiiiiiiriiriri i 194
7-9. Bit-Field Packing in Big-Endian and Little-Endian FOrMALScoeeiiiiiiiiiiii i s iaee e rnn e 195
7-10. Register Argument CONVENTIONS w.uuuuuueesssaeesssssessssaasssesssassestaasnestaaannesssaansnessasnsnesisssnness 199
7-11. Autoinitialization at RUN TimME . uu e e s s s s s s s sa e e e s e sann s raneanaes 234
N 101 (= 2= o g = L 0 Y= Lo R N o 1= 235
7-13. Autoinitialization at Run Time in EABI MOGEuiiiiiiiiiiiiiiiiiiiii i s naaeanaes 236
7-14. Initialization at Load Time in EABI MOUEciuiiiieiiiiiiiiiieiiis it es s ssas s saas s s snneaanes 239
7-15. Constructor Table for EABI MOOE ...uuuiiiuteiiseiiisirse it ssss s saasssase s s sanssnanes 240
7-16. Format of Initialization Records in the .CiNit SECHION ..vvuvivieiiiiiiiiiiii s 240
7-17. Format of Initialization Records in the .pinit SECHIONvviieiiiiiii i e 243
SPRU187T—-July 2011 List of Figures 9

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com

List of Tables

O = b T o o] 0] L 23
2 ©1o] 11 £] I o] 10 oL 23
P T V03] o To Tl B T=T o T8 o N o1 o 24
D S I T To (U =T TN @ o 1T LN 24
2-5. Parser PreproCeSSiNg OPtiONS .. uuuueesissuusesssaasresssssesssastssssaassesssaasnssasssnnssssisnnsessasnnnesins 25
2-6. Predefined SYmDOIS OPLiONS . .uuiuuieiueiriiie i r s 25
2 (N [Tox 1H T = @ o] o] oL 25
B2 TR B - Vo | [0 1 o1 o] 25
P2 TR U] B T4 T= /o 0 o G o 1T o 26
b2 O TR @ o] 10T F2= 14 To) T @) o] =N 27
B I O = 011774 =1 S [0 oG 1] 27
B T | =T S o] 170 27
2-13. Library Function ASSUMPLIONS OPLIONS ..uuuuueeiiiiiiteeiiiateeesaansae s saaae et saannssssannesaaannneessaanneessnn 28
I S N0 1 o] =T 0 0 1T L 28
2-15. File Type SPeCifier OPtiONS .uuuiiuuttiuseieeiaatessts ettt s s saa s s saa s s s e ssaassannstanness 28
P G T I 1 =Tt 0] VST o 1= o1 11T o o1 1T o 29
2-17. Default File EXtENSIONS OPLIONS 4uuuuuueeiiianesssiatte it saassestsassestsaiasssssainsrsssaannnssssasnsnssss 29
2-18. Dynamic Linking Support Compiler OPLONS «..ueeiueeiiseirstsrsesree it saiesrasssarsranesannes 29
2-19. CommMAN FilES OPUIONS t.uuuueeieeiiate e iaaine e saaaaa e s s aante s ssaaa s e et saansa et saannnsssaannnessaannnesssannnnessnn 29
2-20. MISRA-C:2004 OPtiONS 1u st uuetussusssussnsssunsssrsssssssssssass ettt tassrssarsassraeransrinins 29
2-21. Linker BasiC OPtiONS SUMIMAIY . .uuuteiuuetustssusssase e sassssssssss st sansssasstsisssaisstannerannssinns 31
2-22. Command File Preprocessing OptioNS SUMMAIY .. .uuuseurussrsusesisrerisesrissssisssasssrasesrasisisaneiaines 31
P2 R T To | [0 21 o3 @ o] 1o g K0T o] 4=V 31
2-24. File Search Path OptioNS SUMIMAIY .. uueuustirussiate ettt sans s taies e tanrsraessinns 31
2-25. Linker OUtput OPtiONS SUMMIAIY . .uuuueeeeiieeesaaaneesssaantesssaantasssaansasssaannnsssaannssssannneesssnnnsessnn 32
2-26. Symbol Management OPtioNS SUMMIAIY «..uuuueeesruuetesrransressaassestsarssessssassrssssaasrsesrannnnesrasnsness 32
2-27. Run-Time Environment OPtioNS SUMMEAIY ...uuueuuutsruseiesiansesnts s ssssssiss it sansssassssinssannsiainens 32
2-28. Link-Time Optimization OPtiONS SUMIMAIY ...uuueuruutsruseiieeiassesisrs st rasessasrsissanneranes 32
2-29. Miscellaneous OPLiONS SUMIMANY w.uuuuueeiisuueeessnneessaasssessaasssestrasssestaasassssasansrssssannnnsssasnnnesss 34
2-30. Dynamic Linking Linker OptioNS SUMMAIYueeruteiseirssissssantssassessessisssasstaneesasssanssannsiannes 34
2-31. Compiler Options FOr DYNAMIC LINKING. .. .uuueeeiiiiei ittt aae e s saaiae s s srann s s asanne e s sannnnenans 43
2-32. Linker Options FOr DYNaMIC LINKING .. ueeiiuueesinaesesssisssesssasssesssassssssassnssssainnrssssannnssssannsnssss 43
2-33. Compiler Backwards-Compatibility OptioNS SUMIMANY ...uueeiiuiiriuteiieiiieeiierirsrisssnssisnessannesaneens 44
2-34. Predefined C6000 MACIO NAIMES ..uuuueiiuttiistiriste sttt satstasrssass s sannetannens 47
2-35. Raw Listing File [deNntifiersuuueeiiiieeiiiii i s s r e st s s s s s s s s n s asanrnenss 53
2-36. Raw Listing File DiagnostiC [deNtifiersvueivieeiiieiiiri i e nns 54
3-1. Options That You Can Use With --0pt_lEVEI=3 e r e e s e e e eas 76
3-2. Selecting a File-Level Optimization OPLiONeuvseesesiriesesiraesisaisesissisnssssaiasrsessaasresraasnesss 76
3-3. Selecting a Level for the --gen_opt_info OPtionuiieeiriiiiii i 76
3-4. Selecting a Level for the --call_assumptions OPtioNeuvissirissiieeiiiriri s assarernsesanes 77
3-5. Special Considerations When Using the --call_assumptions Optionceeviiiieesiriiiiiiirinneeess 78
4-1. Options That Affect the ASSembBlY OpPtiMIZEr......eiiieiiii i s raaee e 108
4-2. Assembly Optimizer DIr€CtIVES SUMMAIY 1.uueiuseiiuneianserisreraseisistsssssanre et sassaaneraisesansins 114
5-1. Initialized Sections Created by the Compiler for COFFABI ...ttt i s ianeeeas 145
5-2. Initialized Sections Created by the Compiler for EABIuiiiiiiiiiiiii i e naaes 146
5-3. Uninitialized Sections Created by the Compiler for Both ABIS.......ciiiiiiiiiiiiii i aaeee e 146
6-1. TMS320C6000 C/C++ COFF ABI Data TYPES . uuuuutiusiserunisesanisesaesiniassrissasssiniassasinnasranins 152
10 List of Tables SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS

INSTRUMENTS

www.ti.com
6-2. TMS320C6000 C/C++ EABI DAta TYPES 1uuteuueiruutsruneinesiasnssinnssansssassssisssasssannesasssinrsannsisnns 152
LS T - [To [@ o a1 0] B LT 0 1S3 (T N 153
L S €1 O O = g To 11 F= o L= 0 q U= S [0 180
7-1. Data Representation in Registers and MEmMOIYuviieeireeiiieeriteiirirrrisssass e rasssirsannsaanes 189
7 (=T 1] (=] Gl LS Vo = 197
7-3. C6000 C/C++ INtrinSicS SUPPOIt DY DEVICE .uuuiiiiereiiiiiiseiriiatesssiissssssaisessssinnssssannrsessannsnesss 206
7-4. TMS320C6000 C/C++ CompPiler INtrINSICS v uueeiiuteiaterseisiee s it ssia s saine e sanrsraseaanns 212
7-5. TMS320C6400, C6400+, C6740, and C6600 C/C++ Compiler INtrNSICS +..vvuevrueiiiiinirieiieeririieenneiness 214
7-6. TMS320C6400+, C6740, and C6600 C/C++ Compiler INtrNSICS ..uuueiviiuneeiiiiineeiriiirerriirressaannness 216
7-7. TMS320C6700, C6700+, C6740, and C6600 C/C++ Compiler INtriNSICS .vvvvriiiererrriineersaannnersnnnnnees 217
7-8. TMS320C6600 C/C++ Compiler INtrINSICS .. uuuseistsistiriseisisrsise i s e rassaaaes 218
7-9. Vector-in-Scalar Support C/C++ Compiler V7.2 INHNSICS ..uuueiiiiuueeiiiiineiiiiisssiirsssairsesraannenss 223
7-10. Summary of Run-Time-Support ArithmetiC FUNCHONS ..vviuueiiieiiiieiiie s s s s raneanaes 231

SPRU187T-July 2011 List of Tables 11

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

12 List of Tables SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Preface
/] —{IE)S(’?IgUMENTS SPRU187T—July 2011

Read This First

About This Manual

The TMS320C6000 Optimizing Compiler User's Guide explains how to use these compiler tools:
+ Compiler

* Assembly optimizer

* Library-build process

* C++ name demangler

The compiler accepts C and C++ code conforming to the International Organization for Standardization
(ISO) standards for these languages. The compiler supports the 1989 version of the C language and the
1998 version of the C++ language.

This user's guide discusses the characteristics of the C/C++ compiler. It assumes that you already know
how to write C programs. The C Programming Language (second edition), by Brian W. Kernighan and
Dennis M. Ritchie, describes C based on the ISO C standard. You can use the Kernighan and Ritchie
(hereafter referred to as K&R) book as a supplement to this manual. References to K&R C (as opposed to
ISO C) in this manual refer to the C language as defined in the first edition of Kernighan and Ritchie's The
C Programming Language.

Notational Conventions

This document uses the following conventions:

* Program listings, program examples, and interactive displays are shown in a speci al typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:
#i ncl ude <stdi o. h>
mai n()
{ printf("hello, cruel world\n");

}

» In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

» Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

‘cl6x [options] [filenames] [--run_linker [link_options] [object files]] ‘

« Braces ({and}) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_model or --ram_model option:

cléx --run_linker {--rom_model | --ram_model} flenames [--output_file= name.out]
--library= libraryname

SPRU187T-July 2011 Read This First 13

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Related Documentation www.ti.com

* In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in column 1.

symbol .usect "section name", size in bytes|, alignment]

+ Some directives can have a varying number of parameters. For example, the .byte directive. This
syntax is shown as [, ..., parameter].

* The TMS320C6200™ core is referred to as C6200. The TMS320C6400 core is referred to as C6400.
The TMS320C6700 core is referred to as C6700. TMS320C6000 and C6000 can refer to any of
C6200, C6400, C6400+, C6700, C6700+, C6740, or C6600.
Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American
National Standards Institute

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by
Prentice Hall, Englewood Cliffs, New Jersey

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard),
International Organization for Standardization

ISO/IEC 9899:1999, International Standard - Programming Languages - C (The C Standard),
International Organization for Standardization

ISO/IEC 14882-1998, International Standard - Programming Languages - C++ (The C++ Standard),
International Organization for Standardization

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by
O'Reilly & Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The C++ Programming Language (second edition), Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, published by
Addison-Wesley Publishing Company, Reading, Massachusetts, 1990

Tool Interface Standards (TIS) DWARF Debugging Information Format Specification Version 2.0,
TIS Committee, 1995

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup,
Free Standards Group, 2005 (http://dwarfstd.org)

14 Read This First SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://dwarfstd.org
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments
You can use the following books to supplement this user's guide:

SPRAAB5— The Impact of DWARF on Tl Object Files. Describes the Texas Instruments extensions to
the DWARF specification.

SPRAB90— TMS320C6000 EABI Migration Guide Application Report. Describes the changes which
must be made to existing COFF ABI libraries and applications to add support for the new EABI.

SPRU186— TMS320C6000 Assembly Language Tools User's Guide. Describes the assembly
language tools (assembler, linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic debugging directives for the
TMS320C6000 platform of devices (including the C64x+ and C67x+ generations).

SPRU190— TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000 family of digital signal processors
(DSPs).

SPRU198— TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x DSP.

SPRU197— TMS320C6000 Technical Brief. Provides an introduction to the TMS320C62x and
TMS320C67x digital signal processors (DSPs) of the TMS320C6000 DSP family. Describes the
CPU architecture, peripherals, development tools and third-party support for the C62x and C67x
DSPs.

SPRU423— TMS320 DSP/BIOS User's Guide. DSP/BIOS gives developers of mainstream applications
on Texas Instruments TMS320 digital signal processors (DSPs) the ability to develop embedded
real-time software. DSP/BIOS provides a small firmware real-time library and easy-to-use tools for
real-time tracing and analysis.

SPRU731— TMS320C62x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C62x digital signal processors
(DSPs) of the TMS320C6000 DSP family. The C62x DSP generation comprises fixed-point devices
in the C6000 DSP platform.

SPRU732— TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRU733— TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C67x and TMS320C67x+ digital
signal processors (DSPs) of the TMS320C6000 DSP platform. The C67x/C67x+ DSP generation
comprises floating-point devices in the C6000 DSP platform. The C67x+ DSP is an enhancement of
the C67x DSP with added functionality and an expanded instruction set.

SPRUGH7— TMS320C66x CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C66x digital signal processors
(DSPs) of the TMS320C6000 DSP platform. The C66x DSP generation comprises floating-point
devices in the C6000 DSP platform.

TMS320C6200, TMS320C6000 are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

SPRU187T-July 2011 Read This First 15

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spraab5
http://www.ti.com/lit/pdf/sprab90
http://www.ti.com/lit/pdf/spru186
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru197
http://www.ti.com/lit/pdf/spru423
http://www.ti.com/lit/pdf/spru731
http://www.ti.com/lit/pdf/spru732
http://www.ti.com/lit/pdf/spru733
http://www.ti.com/lit/pdf/sprugh7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

16 Read This First SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

. Chapter 1
I3 TEXAS SPRU187T—July 2011

INSTRUMENTS
Introduction to the Software Development Tools

The TMS320C6000™ is supported by a set of software development tools, which includes an optimizing
C/C++ compiler, an assembly optimizer, an assembler, a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features of the optimizing C/C++
compiler. The assembly optimizer is discussed in Chapter 4. The assembler and linker are discussed in
detail in the TMS320C6000 Assembly Language Tools User's Guide.

Topic Page

1.1 Software Development TOOIS OVEIVIEWcuiuiuieieieiiiiiieieiiaeereaeaeeeaseasaseaeenens 18

1.2 C/CH+ COMPIlEr OVEIVIEW ..neeieieeiei ettt ettt e et e et e ettt e e e e eatneeaeaeananenen 19
SPRU187T-July 2011 Introduction to the Software Development Tools 17

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Software Development Tools Overview www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most
common path of software development for C language programs. The other portions are peripheral
functions that enhance the development process.

Figure 1-1. TMS320C6000 Software Development Flow

C/C++
source
files
Macro
source C/C++ Linear
files compiler assembly

Assembler
source

Assembly

optimizer

Assembly
Macro .
library Assembler optlmlzed
file
. i Debugging
Object Library-build
files process
H Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

EPROM
programmer

Cross-reference | Object file
lister utilities

Absolute lister

The following list describes the tools that are shown in Figure 1-1:

* The assembly optimizer allows you to write linear assembly code without being concerned with the
pipeline structure or with assigning registers. It accepts assembly code that has not been
register-allocated and is unscheduled. The assembly optimizer assigns registers and uses loop

optimization to turn linear assembly into highly parallel assembly that takes advantage of software
pipelining. See Chapter 4.

* The compiler accepts C/C++ source code and produces C6000 assembly language source code. See
Chapter 2.

18 Introduction to the Software Development Tools SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Compiler Overview

* The assembler translates assembly language source files into machine language object modules. The
TMS320C6000 Assembly Language Tools User's Guide explains how to use the assembler.

« The linker combines object files into a single executable object module. As it creates the executable
module, it performs relocation and resolves external references. The linker accepts relocatable object
files and object libraries as input. See Chapter 5. The TMS320C6000 Assembly Language Tools
User's Guide provides a complete description of the linker.

» The archiver allows you to collect a group of files into a single archive file, called a library.
Additionally, the archiver allows you to modify a library by deleting, replacing, extracting, or adding
members. One of the most useful applications of the archiver is building a library of object modules.
The TMS320C6000 Assembly Language Tools User's Guide explains how to use the archiver.

* You can use the library-build process to build your own customized run-time-support library. See
Section 8.5. Standard run-time-support library functions for C and C++ are provided in the
self-contained rtssrc.zip file.

The run-time-support libraries contain the standard ISO run-time-support functions, compiler-utility
functions, floating-point arithmetic functions, and C 1/O functions that are supported by the compiler.
See Chapter 8.

* The hex conversion utility converts an object file into other object formats. You can download the
converted file to an EPROM programmer. The TMS320C6000 Assembly Language Tools User's Guide
explains how to use the hex conversion utility and describes all supported formats.

* The absolute lister accepts linked object files as input and creates .abs files as output. You can
assemble these .abs files to produce a listing that contains absolute, rather than relative, addresses.
Without the absolute lister, producing such a listing would be tedious and would require many manual
operations. The TMS320C6000 Assembly Language Tools User's Guide explains how to use the
absolute lister.

* The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definitions, and their references in the linked source files. The TMS320C6000 Assembly
Language Tools User's Guide explains how to use the cross-reference utility.

+ The C++ name demangler is a debugging aid that converts names mangled by the compiler back to
their original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++
name demangler on the assembly file that is output by the compiler; you can also use this utility on the
assembler listing file and the linker map file. See Chapter 9.

* The disassembler disassembles object files. The TMS320C6000 Assembly Language Tools User's
Guide explains how to use the disassembler.

+ The main product of this development process is a module that can be executed in a TMS320C6000
device. You can use one of several debugging tools to refine and correct your code. Available products
include:

— An instruction-level and clock-accurate software simulator
— An XDS emulator

1.2 C/C++ Compiler Overview

The following subsections describe the key features of the compiler.

1.2.1 ANSI/ISO Standard

These features pertain to ISO standards:
+ ISO-standard C
The C/C++ compiler conforms to the ISO C standard as defined by the ISO specification and described

in the second edition of Kernighan and Ritchie's The C Programming Language (K&R). The ISO C
standard supercedes and is the same as the ANSI C standard.

¢ |SO-standard C++

The C/C++ compiler supports C++ as defined by the ISO C++ Standard and described in Ellis and
Stroustrup's The Annotated C++ Reference Manual (ARM). The compiler also supports embedded
C++. For a description of unsupported C++ features, see Section 6.2.

SPRU187T-July 2011 Introduction to the Software Development Tools 19

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

C/C++ Compiler Overview www.ti.com

ISO-standard run-time support

The compiler tools come with an extensive run-time library. All library functions conform to the 1SO
C/C++ library standard. The library includes functions for standard input and output, string
manipulation, dynamic memory allocation, data conversion, timekeeping, trigonometry, and exponential
and hyperbolic functions. Functions for signal handling are not included, because these are
target-system specific. For more information, see Chapter 8.

1.2.2 Output Files
These features pertain to output files created by the compiler:

COFF object files

Common object file format (COFF) allows you to define your system's memory map at link time. This
maximizes performance by enabling you to link C/C++ code and data objects into specific memory
areas. COFF also supports source-level debugging.

ELF object files

Executable and linking format (ELF) enables supporting modern language features like early template
instantiation and export inline functions support.

1.2.3 Compiler Interface

These features pertain to interfacing with the compiler:

Compiler program

The compiler tools include a compiler program that you use to compile, optimize, assemble, and link
programs in a single step. For more information, see Section 2.1

Flexible assembly language interface

The compiler has straightforward calling conventions, so you can write assembly and C functions that
call each other. For more information, see Chapter 7.

1.2.4 Utilities
These features pertain to the compiler utilities:

Library-build process

The library-build process lets you custom-build object libraries from source for any combination of
run-time models. For more information, see Section 8.5.

C++ name demangler

The C++ name demangler (dem6x) is a debugging aid that translates each mangled name it detects to
its original name found in the C++ source code. For more information, see Chapter 9.

Hex conversion utility

For stand-alone embedded applications, the compiler has the ability to place all code and initialization
data into ROM, allowing C/C++ code to run from reset. The COFFor ELF files output by the compiler
can be converted to EPROM programmer data files by using the hex conversion utility, as described in
the TMS320C6000 Assembly Language Tools User's Guide.

20 Introduction to the Software Development Tools SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

i3 TEXAS Chapter
INSTRUMENTS

2

SPRU187T-July 2011

Using the C/C++ Compiler

The compiler translates your source program into machine language object code that the TMS320C6000
can execute. Source code must be compiled, assembled, and linked to create an executable object file. All
of these steps are executed at once by using the compiler.

Topic Page
2205 A AN o o 11) 0 o =0 1 Y 11 (= 22
2.2 Invoking the C/CH++ COMPIlEr ...e.iiiiii ettt e e e e e e eenenns 22
2.3 Changing the Compiler's Behavior With OptionScc.oviiiiiiiiiiiiiiii e 23
2.4 Controlling the Compiler Through Environment Variablesccoiiiiiiiiiiinins 44
2.5 Precompiled Header SUPPOIT .uiuiuiiititiiiietiieee ettt et a s e e et eaaaeenaanaaens 46
2.6 Controlling the PreprOCESSOr uuiuiiit ittt ittt ettt a e e et aaaeeaaananans 47
2.7 Understanding DiagNOStiC MESSAUESuveeeueuiueuenanie et aeaeeeenenanrerereaeaeaeaenenananns 50
P2 S N © 11 =T 1Y =TT = T =P 53
29 Generating Cross-Reference Listing Information (--gen_acp_xref Option) 53
2.10 Generating a Raw Listing File (--gen_acp_raw OptioNn)ccovieiiieiniiieieieiiieieaennnn 53
2.11 Using Inline FUNCLION EXPaANSION ..uiuiuiiiieiiiiiitiieieet et ee e eaeae et e e aeeaeaeaaeneneees 54
2.12 Interrupt Flexibility Options (--interrupt_threshold Option)cccoceiiiiiiiiiiiiiieienne, 57
2.13 Linking C6400 Code With C6200/C6700/Older C6400 Object COdeoeveivueueuenenrnnnns 58
P22 12 S © E= T o I 1 =T o P 58
2.15 Controlling Application Binary INterfacecocoooeiiiiiiiiiii e 60
2.16 Enabling Entry Hook and Exit HOOK FUNCLIONSieiniiiieiiiiie e 61

SPRU187T-July 2011 Using the C/C++ Compiler 21

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

About the Compiler www.ti.com

2.1 About the Compiler
The compiler lets you compile, assemble, and optionally link in one step. The compiler performs the
following steps on one or more source modules:
* The compiler accepts C/C++ source code and assembly code, and produces object code.

You can compile C, C++, and assembly files in a single command. The compiler uses the filename
extensions to distinguish between different file types. See Section 2.3.9 for more information.

» The linker combines object files to create a static executable or dynamic object file. The linker is
optional, so you can compile and assemble many modules independently and link them later. See
Chapter 5 for information about linking the files.

By default, the compiler does not invoke the linker. You can invoke the linker by using the --run_linker
compiler option.

For a complete description of the assembler and the linker, see the TMS320C6000 Assembly Language
Tools User's Guide.

2.2 Invoking the C/C++ Compiler

To invoke the compiler, enter:

‘cl6x [options] [filenames] [--run_linker [link_options] object files]]

cl6x Command that runs the compiler and the assembiler.

options Options that affect the way the compiler processes input files. The options are
listed in Table 2-2 through Table 2-29.

filenames One or more C/C++ source files, assembly language source files, linear
assembly files, or object files.

--run_linker Option that invokes the linker. The --run_linker option's short form is -z. See
Chapter 5 for more information.

link_options Options that control the linking process.

object files Name of the additional object files for the linking process.

The arguments to the compiler are of three types:
* Compiler options

* Link options

+ Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler
options must precede the --run_linker option, and all link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file filenames can
be placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, assemble a third file named
seek.asm, and link to create an executable program called myprogram.out, you will enter:

cl 6x syntab.c file.c seek.asm--run_linker --library=lnk.cnd
--library=rts6200.1ib --output_fil e=nyprogram out

22 Using the C/C++ Compiler SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior With Options

23 Ch

anging the Compiler's Behavior With Options

Options control the operation of the compiler. This section provides a description of option conventions
and an option summary table. It also provides detailed descriptions of the most frequently used options,

incl

uding options used for type-checking and assembling.

For a help screen summary of the options, enter cl6x with no parameters on the command line.

The following apply to the compiler options:

3

Options are preceded by one or two hyphens.

Options are case sensitive.

Options are either single letters or sequences of characters.
Individual options cannot be combined.

An option with a required parameter should be specified with an equal sign before the parameter to
clearly associate the parameter with the option. For example, the option to undefine a constant can be
expressed as --undefine=name. Although not recommended, you can separate the option and the
parameter with or without a space, as in --undefine name or -undefinename.

An option with an optional parameter should be specified with an equal sign before the parameter to
clearly associate the parameter with the option. For example, the option to specify the maximum
amount of optimization can be expressed as -O=3. Although not recommended, you can specify the
parameter directly after the option, as in -O3. No space is allowed between the option and the optional
parameter, so -O 3 is not accepted.

Files and options except the --run_linker option can occur in any order. The --run_linker option must
follow all other compile options and precede any link options.

You can define default options for the compiler by using the C6X_C_OPTION environment variable. For a
detailed description of the environment variable, see Section 2.4.1.

Table 2-2 through Table 2-29 summarize all options (including link options). Use the references in the
tables for more complete descriptions of the options.

Table 2-1. Basic Options

Option Alias Effect Section

--silicon_version=id -mv Selects target version Section 2.3.4

--symdebug:dwarf -g Enables symbolic debugging Section 2.3.5

Section 3.15.1

--symdebug:coff Enables symbolic debugging using the alternate STABS debugging Section 2.3.5
format. STABS format is not supported for C6400+ or C674x, or Section 3.15.1
when using ELF.

--symdebug:none Disables all symbolic debugging Section 2.3.5

--symdebug:profile_coff Enables profiling using the alternate STABS debugging format. Section 2.3.5
STABS format is not supported for C6400+ or C674x, or when using
ELF.

--symdebug:skeletal Enables minimal symbolic debugging that does not hinder Section 2.3.5
optimizations (default behavior)

--opt_level[=0-3] -0 Optimization level (Default:2) Section 3.1

--opt_for_space[=0-3] -ms Optimize for code size (Default: 0) Section 3.5

Table 2-2. Control Options

Option Alias Effect Section

--compile_only -C Disables linking (negates --run_linker) Section 5.1.3

--help -h Prints (on the standard output device) a description of the options Section 2.3.1
understood by the compiler.

--run_linker -z Enables linking Section 2.3.1

--skip_assembler -n Compiles or assembly optimizes only Section 2.3.1

SPRU187T—-July 2011 Using the C/C++ Compiler 23

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

Changing the Compiler's Behavior With Options

TEXAS
INSTRUMENTS

www.ti.com

Table 2-3. Symbolic Debug Options

Option Alias Effect Section
--symdebug:dwarf -g Enables symbolic debugging Section 2.3.5
Section 3.15.1
--symdebug:coff Enables symbolic debugging using the alternate STABS debugging Section 2.3.5
format. STABS format is not supported for C6400+ or C674x, or Section 3.15.1
when using ELF.
--symdebug:none Disables all symbolic debugging Section 2.3.5
--symdebug:profile_coff Enables profiling using the alternate STABS debugging format. Section 2.3.5
STABS format is not supported for C6400+ or C674x, or when using
ELF.
--symdebug:skeletal Enables minimal symbolic debugging that does not hinder Section 2.3.5
optimizations (default behavior)
--machine_regs Displays reg operands as machine registers in assembly code Section 2.3.11
--symdebug:dwarf_subsections Changes how debug information is represented in the object file Section 2.3.5
=on|off
--symdebug:dwarf_version=2|3 Specifies the DWARF format version Section 2.3.5
--symdebug:keep_all_types Keep unreferenced type information (default for ELF with debug) Section 2.3.5
Table 2-4. Language Options
Option Alias Effect Section
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 2.3.7
--create_pch=filename Creates a precompiled header file with the name specified Section 2.5
--embedded_cpp -pe Enables embedded C++ mode Section 6.14.3
--exceptions Enables C++ exception handling Section 6.6
--extern_c_can_throw Allow extern C functions to propagate exceptions
--fo_mode={relaxed|strict} Enables or disables relaxed floating-point mode Section 2.3.2
--gcc Enables support for GCC extensions Section 6.15
--gen_asp_raw -pl Generates a raw listing file Section 2.10
--gen_acp_xref -px Generates a cross-reference listing file Section 2.9
--keep_unneeded_statics Keeps unreferenced static variables. Section 2.3.2
--kr_compatible -pk Allows K&R compatibility Section 6.14.1
--multibyte_chars -pc Enables multibyte character support. -
--no_inlining -pi Disables definition-controlled inlining (but --opt_level=3 (or -O3) Section 2.11
optimizations still perform automatic inlining)
--no_intrinsics -pn Disables intrinsic functions. No predefinition of compiler-supplied -
intrinsic functions.
--pch Creates or uses precompiled header files Section 2.5
--pch_dir=directory Specifies the path where the precompiled header file resides Section 2.5.2
--pch_verbose Displays a message for each precompiled header file that is Section 2.5.3
considered but not used
--program_level_compile -pm Combines source files to perform program-level optimization Section 3.7
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations Section 6.14.2
--rtti -rtti Enables run time type information (RTTI) -
--static_template_instantiation Instantiate all template entities with internal linkage -
--strict_ansi -ps Enables strict ISO mode (for C/C++, not K&R C) Section 6.14.2

--use_pch=filename

Specifies the precompiled header file to use for this compilation

Section 2.5.2

24 Using the C/C++ Compiler

SPRU187T-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
www.ti.com Changing the Compiler's Behavior With Options
Table 2-5. Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed Section 2.6.7
output, writes a list of dependency lines suitable for input to a
standard make utility
--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed Section 2.6.8
output, writes a list of files included with the #include directive
--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and Section 2.6.9
user-defined macros to a file with the same name as the input but
with a .pp extension.
--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file Section 2.6.3
with the same name as the input but with a .pp extension.
--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping Section 2.6.5
the comments, to a file with the same name as the input but with a
.pp extension.
--preproc_with_compile -ppa Continues compilation after preprocessing Section 2.6.4
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with Section 2.6.6
line-control information (#line directives) to a file with the same name
as the input but with a .pp extension.
Table 2-6. Predefined Symbols Options
Option Alias Effect Section
--define=name[=def] -D Predefines name Section 2.3.1
--undefine=name -U Undefines name Section 2.3.1
Table 2-7. Include Options
Option Alias Effect Section
--include_path=directory -1 Defines #include search path Section 2.6.2.1
--preinclude=filename Includes filename at the beginning of compilation Section 2.3.2
Table 2-8. Diagnostics Options
Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits --
--consultant Generates compiler consultant advice Section 2.3.3
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error Section 2.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark Section 2.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num Section 2.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning Section 2.7.1
--display_error_number -pden Displays a diagnostic's identifiers along with its text Section 2.7.1
--emit_warnings_as_errors -pdew Treat warnings as errors Section 2.7.1
--issue_remarks -pdr Issues remarks (nonserious warnings) Section 2.7.1
--no_warnings -pdw Suppresses warning diagnostics (errors are still issued) Section 2.7.1
--quiet -q Suppresses progress messages (quiet) --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after Section 2.7.1
this number of errors. (The default is 100.)
--super_quiet -qq Super quiet mode -
--tool_version -version Displays version number for each tool -
--verbose Display banner and function progress information -
--verbose_diagnostics -pdv Provides verbose diagnostics that display the original source with Section 2.7.1
line-wrap
--write_diagnostics_file -pdf Generates a diagnostics information file. Compiler only option. Section 2.7.1
SPRU187T—-July 2011 Using the C/C++ Compiler 25

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
Changing the Compiler's Behavior With Options www.ti.com
Table 2-9. Run-Time Model Options
Option Alias Effect Section
--silicon_version=id -mv Target processor version (when not specified, compiler defaults to Section 2.3.4
--silicon_version=6200)
--abi={eabi|coffabi} Specifies the application binary interface Section 2.15
--big_endian -me Produces object code in big-endian format Section 2.13
--debug_software_pipeline -mw Produce verbose software pipelining report Section 3.2.2
--disable_software_pipelining -mu Turns off software pipelining Section 3.2.1
--dprel Specifies that all non-const data is addressed using DP-relative Section 7.1.5.2
addressing
--fp_not_associative -mc Prevents reordering of associative floating-point operations Section 3.11
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic Section 2.3.3
--gen_func_subsections={on|off} -mo Puts each function in a separate subsection in the object file Section 5.2.1
--interrupt_threshold[=num] -mi Specifies an interrupt threshold value Section 2.12
--mem_model:const= Allows const objects to be made far independently of the Section 7.1.5.3
{far_aggregates|far|data} --mem_model:data option
--mem_model:data= Determines data access model Section 7.1.5.1
{far_aggregates|near|far}
--no_bad_aliases -mt Allows certain assumptions about aliasing and loops Section 3.10.2
Section 4.6.2
--N0_compress Prevents compression on C6400+, C6740, and C6600
--no_reload_errors Turns off all reload-related loop buffer error messages for C6400+, -
C6740, and C6600
--optimize_with_debug -mn Reenables optimizations disabled with --symdebug:dwarf Section 3.15.1
--profile:breakpt Enables breakpoint-based profiling Section 2.3.5
Section 3.15.2
--profile:power Enables power profiling Section 2.3.5
Section 3.15.2
--sat_reassoc={on|off} Enables or disables the reassociation of saturating arithmetic.
Default is --sat_reassoc=off.
--small_enum --small-enum Uses the smallest possible size for the enumeration type Section 2.3.3
--speculate_loads=n -mh Specifies speculative load byte count threshold. Allows Section 3.2.3.1
speculative execution of loads with bounded address ranges.
--speculate_unknown_loads Allows speculative execution of loads with unbounded addresses Section 2.3.3
--target_compatiblity 6200 -mb Enables C62xx compatibility with C6400 code Section 2.13
--use_const_for_alias_analysis -0X Uses const to disambiguate pointers Section 2.3.3
--wchar_t={32|16} Sets the size of the C/C++ type wchar_t. Default is 16 bits. Section 2.3.3
26 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
www.ti.com Changing the Compiler's Behavior With Options
Table 2-10. Optimization Options®
Option Alias Effect Section
--opt_level=0 -00 Optimizes register usage Section 3.1
--opt_level=1 -01 Uses -O0 optimizations and optimizes locally Section 3.1
--opt_level=2 -02 or -0 Uses -O1 optimizations and optimizes globally (default) Section 3.1
--opt_level=3 -03 Uses -O2 optimizations and optimizes the file Section 3.1
Section 3.6
--opt_for_space=n -ms Controls code size on four levels (0, 1, 2, and 3) Section 3.5
--auto_inline=[size] -0i Sets automatic inlining size (--opt_level=3 only). If size is not Section 3.13
specified, the default is 1.
--call_assumptions=0 -op0 Specifies that the module contains functions and variables that are ~ Section 3.7.1
called or modified from outside the source code provided to the
compiler
--call_assumptions=1 -opl Specifies that the module contains variables modified from outside Section 3.7.1
the source code provided to the compiler but does not use functions
called from outside the source code
--call_assumptions=2 -op2 Specifies that the module contains no functions or variables that are Section 3.7.1
called or modified from outside the source code provided to the
compiler (default)
--call_assumptions=3 -op3 Specifies that the module contains functions that are called from Section 3.7.1
outside the source code provided to the compiler but does not use
variables modified from outside the source code
--gen_opt_info=0 -on0 Disables the optimization information file Section 3.6.2
--gen_opt_info=1 -onl Produces an optimization information file Section 3.6.2
--gen_opt_info=2 -on2 Produces a verbose optimization information file Section 3.6.2
--opt_for_speed=n -mf Optimizes for speed over space (0-5 range) Section 3.16
--optimizer_interlist -0s Interlists optimizer comments with assembly statements Section 3.14
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions Section 2.16
--single_inline Inlines functions that are only called once
--aliased_variables -ma Assumes called functions create hidden aliases (rare) Section 3.10.1
@ Note: Machine-specific options (see Table 2-9) can also affect optimization.
Table 2-11. Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks Section 2.16
--entry_parm={none|name| Specifies the parameters to the function to the --entry_hook option Section 2.16
address}
--exit_hook[=name] Enables exit hooks Section 2.16
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option Section 2.16
Table 2-12. Feedback Options
Option Alias Effect Section
--analyze={codecov|callgraph} Generate analysis info from profile data Section 3.9.4.2
--analyze_only Only generate analysis Section 3.9.4.2
--gen_profile_info Generates instrumentation code to collect profile information Section 3.8.1.3
--use_profile_info=filel], file2,...] Specifies the profile information file(s) Section 3.8.1.3
SPRU187T-July 2011 Using the C/C++ Compiler 27

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

Changing the Compiler's Behavior With Options

TEXAS

INSTRUMENTS

www.ti.com

Table 2-13. Library Function Assumptions Options

Option Alias Effect Section
--printf_support={nofloat|full| Enables support for smaller, limited versions of the printf and sprintf Section 2.3.2
minimal} run-time-support functions.
--std_lib_func_defined -oll or -oL1 Informs the optimizer that your file declares a standard library Section 3.6.1
function
--std_lib_func_not_defined -0l2 or -oL2 Informs the optimizer that your file does not declare or alter library Section 3.6.1
functions. Overrides the -o0l0 and -ol1 options (default).
--std_lib_func_redefined -0l0 or -oLO Informs the optimizer that your file alters a standard library function =~ Section 3.6.1
Table 2-14. Assembler Options
Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file Section 2.3.11
--asm_listing -al Generates an assembly listing file Section 2.3.11
--c_src_interlist -SS Interlists C source and assembly statements Section 2.14
Section 3.14
--src_interlist -S Interlists optimizer comments (if available) and assembly source Section 2.3.1
statements; otherwise interlists C and assembly source statements
--absolute_listing -aa Enables absolute listing Section 2.3.11
--asm_define=name[=def] -ad Sets the name symbol Section 2.3.11
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies Section 2.3.11
--asm_includes -api Performs preprocessing; lists only included #include files Section 2.3.11
--asm_undefine=name -au Undefines the predefined constant name Section 2.3.11
--copy_file=filename -ahc Copies the specified file for the assembly module Section 2.3.11
--cross_reference -ax Generates the cross-reference file Section 2.3.11
--include_file=filename -ahi Includes the specified file for the assembly module Section 2.3.11
--no_const_clink Stops generation of .clink directives for const global arrays. Section 2.3.2
--output_all_syms -as Puts labels in the symbol table Section 2.3.11
--strip_coff_underscore Aids in transitioning hand-coded assembly from COFF to EABI
--Syms_ignore_case -ac Makes case insignificant in assembly source files Section 2.3.11
Table 2-15. File Type Specifier Options
Option Alias Effect Section
--ap_file=filename -fl Identifies filename as a linear assembly source file regardless of its ~ Section 2.3.7
extension. By default, the compiler and assembly optimizer treat .sa
files as linear assembly source files.
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its Section 2.3.7
extension. By default, the compiler and assembler treat .asm files as
assembly source files.
--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By ~ Section 2.3.7
default, the compiler treats .c files as C source files.
--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By Section 2.3.7
default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.
--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. Section 2.3.7

By default, the compiler and linker treat .obj files as object code files.

28 Using the C/C++ Compiler

Copyright © 2011, Texas Instruments Incorporated

SPRU187T-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior With Options

Table 2-16. Directory Specifier Options

Option

Alias Effect Section

--abs_directory=directory
--asm_directory=directory
--list_directory=directory
--obj_directory=directory
--output_file=filename
--pp_directory=dir

--temp_directory=directory

-fb Specifies an absolute listing file directory. By default, the compiler Section 2.3.10
uses the .obj directory.

-fs Specifies an assembly file directory. By default, the compiler uses Section 2.3.10
the current directory.

-ff Specifies an assembly listing file and cross-reference listing file Section 2.3.10
directory By default, the compiler uses the .obj directory.

-fr Specifies an object file directory. By default, the compiler uses the Section 2.3.10
current directory.

-fe Specifies a compilation output file name; can override Section 2.3.10
--obj_directory.
Specifies a preprocessor file directory. By default, the compiler uses Section 2.3.10
the current directory.

-ft Specifies a temporary file directory. By default, the compiler uses the Section 2.3.10
current directory.

Table 2-17. Default File Extensions Options

Option Alias Effect Section

--ap_extension=[.]Jextension -el Sets a default extension for linear assembly source files. Section 2.3.9
--asm_extension=[.]Jextension -ea Sets a default extension for assembly source files Section 2.3.9
--c_extension=[.]Jextension -ec Sets a default extension for C source files Section 2.3.9
--cpp_extension=[.]Jextension -ep Sets a default extension for C++ source files Section 2.3.9
--listing_extension=[.Jextension -es Sets a default extension for listing files Section 2.3.9
--obj_extension=[.]Jextension -eo Sets a default extension for object files Section 2.3.9

Table 2-18. Dynamic Linking Support Compiler Options®

Option

Alias Description

--dsbt
--export_all_cpp_vtbl
--import_helper_functions
--import_undef[={offlon}]
--inline_plt[={offlon}]
--linux

--pic[={near|far}]

--visibility={hidden|fhidden|default|
protected}

Generates addressing via Dynamic Segment Base Table

Exports C++ virtual tables by default

Treats compiler helper functions as imported references

Imports all undefined symbols. Default is on.

Inlines the import function call stub. Default is on.

Generates code for Linux

Generates position independent addressing for a shared object. Default is near.
Specifies visibility of global symbols

@ See Section 2.3.12 for more information.

Table 2-19. Command Files Options

Option

Alias Effect Section

--cmd_file=filename

-@ Interprets contents of a file as an extension to the command line. Section 2.3.1
Multiple -@ instances can be used.

Table 2-20. MISRA-C:2004 Options

Option Alias Effect Section

--check_misra[={all|required| Enables checking of the specified MISRA-C:2004 rules. Default is Section 2.3.2
advisory|none|rulespec}] all.

--misra_advisory={error|warning| Sets the diagnostic severity for advisory MISRA-C:2004 rules Section 2.3.2

remark|suppress}

SPRU187T-July 2011
Submit Documentation Feedback

Using the C/C++ Compiler

Copyright © 2011, Texas Instruments Incorporated

29

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
Changing the Compiler's Behavior With Options www.ti.com
Table 2-20. MISRA-C:2004 Options (continued)
Option Alias Effect Section
--misra_required={error|warning| Sets the diagnostic severity for required MISRA-C:2004 rules Section 2.3.2
remark|suppress}
30 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior With Options

The following tables list the linker options. See the TMS320C6000 Assembly Language Tools User's

Guide for details on these options.

Table 2-21. Linker Basic Options Summary

Option Alias Description

--output_file=file -0 Names the executable output module. The default filename is a.out.

--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places
the listing in filename

--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a
global symbol that specifies the heap size. Default = 1K bytes

--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the

stack size. Default = 1K bytes

Table 2-22. Command File Preprocessing Options Summary

Option

Alias

Description

--define=name=value
--undefine=name

Predefines name as a preprocessor macro.
Removes the preprocessor macro name.

--disable_pp Disables preprocessing for command files

Table 2-23. Diagnostic Options Summary
Option Alias Description
--diag_error=num Categorizes the diagnostic identified by num as an error
--diag_remark=num Categorizes the diagnostic identified by num as a remark
--diag_suppress=num Suppresses the diagnostic identified by num
--diag_warning=num Categorizes the diagnostic identified by num as a warning
--display_error_number Displays a diagnostic's identifiers along with its text
--emit_warnings_as_errors -pdew Treat warnings as errors
--issue_remarks Issues remarks (nonserious warnings)
--no_demangle Disables demangling of symbol names in diagnostics
--no_warnings Suppresses warning diagnostics (errors are still issued)
--set_error_limit=count Sets the error limit to count. The linker abandons linking after this number of errors. (The

default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap
--warn_sections -w Displays a message when an undefined output section is created

Table 2-24. File Search Path Options Summary

Option Alias Description

--library=file -l Names an archive library or link command file as linker input

--search_path=pathname -1 Alters library-search algorithms to look in a directory named with pathname before
looking in the default location. This option must appear before the --library option.

--disable_auto_rts Disables the automatic selection of a run-time-support library

--priority -priority Satisfies unresolved references by the first library that contains a definition for that
symbol

--reread_libs -X Forces rereading of libraries, which resolves back references

SPRU187T—-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Using the C/C++ Compiler

31

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Changing the Compiler's Behavior With Options

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-25. Linker Output Options Summary

Option Alias Description

--output_file=file -0 Names the executable output module. The default filename is a.out.

--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places
the listing in filename

--absolute_exe -a Produces an absolute, executable module. This is the default; if neither --absolute_exe
nor --relocatable is specified, the linker acts as if --absolute_exe were specified.

--mapfile_contents=attribute Controls the information that appears in the map file.

--relocatable -r Produces a nonexecutable, relocatable output module

--rom Creates a ROM object

--run_abs -abs Produces an absolute listing file

--xml_link_info=file |(_StT(nerates a well-formed XML file containing detailed information about the result of a
in

Table 2-26. Symbol Management Options Summary

Option Alias Description

--entry_point=symbol -e Defines a global symbol that specifies the primary entry point for the output module

--globalize=pattern Changes the symbol linkage to global for symbols that match pattern

--hide=pattern Hides symbols that match the specified pattern

--localize=pattern Make the symbols that match the specified pattern local

--make_global=symbol -g Makes symbol global (overrides -h)

--make_static -h Makes all global symbols static

--n0_sym_merge -b Disables merge of symbolic debugging information in COFF object files

--no_sym_table -s Strips symbol table information and line number entries from the output module

--retain={symbol| Specifies a symbol or section to be retained by the linker

section specification}

--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions

--symbol_map=refname=defname Specifies a symbol mapping; references to the refname symbol are replaced with
references to the defname symbol

--undef_sym=symbol -u Adds symbol to the symbol table as an unresolved symbol

--unhide=pattern

Excludes symbols that match the specified pattern from being hidden

Table 2-27. Run-Time Environment Options Summary

Option Alias Description

--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a
global symbol that specifies the heap size. Default = 1K bytes

--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the
stack size. Default = 1K bytes

--arg_size=size --args Reserve size bytes for the argc/argv memory area

--fill_value=value -f Sets default fill value for holes within output sections

--ram_model -cr Initializes variables at load time

--rom_model -C Autoinitializes variables at run time

--trampolines[=off|on]

Generates far call trampolines. Default is on.

Table 2-28. Link-Time Optimization Options Summary

Option

Description

--cinit_compression[=compression_kind]

--compress_dwarf[=off|on]

--copy_compression[=compression_kind]

Specifies the type of compression to apply to the c auto initialization data. Default is rle.

Aggressively reduces the size of DWARF information from input object files. Default is
on.

Compresses data copied by linker copy tables. Default is rle.

32 Using the C/C++ Compiler

SPRU187T-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Changing the Compiler's Behavior With Options

Table 2-28. Link-Time Optimization Options Summary (continued)

Option Description
--unused_section_elimination[=off|on] Eliminates sections that are not needed in the executable module. Default is on.
SPRU187T—-July 2011 Using the C/C++ Compiler 33

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Changing the Compiler's Behavior With Options

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-29. Miscellaneous Options Summary

Option Alias Description
--disable_clink A Disables conditional linking of COFF object modules
--linker_help [-]-help Displays information about syntax and available options

--minimize_trampolines[=off|
postorder]

--preferred_order=function
--strict_compatibility[=off|on]

--trampoline_min_spacing=size

--zero_init=[off|on]

Places sections to minimize number of far trampolines required. Default is postorder.

Prioritizes placement of functions

Performs more conservative and rigorous compatibility checking of input object files.
Default is on.

When trampoline reservations are spaced more closely than the specified limit, tries to
make them adjacent

Controls preinitialization of uninitialized variables. Default is on.

Table 2-30. Dynamic Linking Linker Options Summary

Option

Description

--dsbt_index=index
--dsbt_size=size
--dynamic[=exel|lib]]
--export=symbol
--fini=symbol
--forced_static_binding[=off|on]
--import=symbol
--init=symbol
--rpath=dir
--runpath=dir
--shared
--soname=soname
--Sysv

Specifies the Data Segment Base Table (DSBT) index of this component
Specifies the size of the DSBT in words

Generates dynamic executable or a dynamic library. Default is .exe.
Specifies symbol exported by ELF object

Specifies symbol name of termination code

Forces all import references to bind during static linking; defaults to on
Specifies symbol imported by ELF object

Specifies symbol name of termination code

Adds directory to beginning of library search path

Adds directory to end of library search path

Generates an ELF dynamically shared object (DSO)

Specifies ELF shared object file name

Generates SysV ELF output file

2.3.1 Frequently Used Options

Following are detailed descriptions of options that you will probably use frequently:

--c_src_interlist

--cmd_file=filename

--compile_only

Invokes the interlist feature, which interweaves original C/C++ source
with compiler-generated assembly language. The interlisted C
statements may appear to be out of sequence. You can use the interlist
feature with the optimizer by combining the --optimizer_interlist and
--c_src_interlist options. See Section 3.14. The --c_src_interlist option
can have a negative performance and/or code size impact.

Appends the contents of a file to the option set. You can use this option
to avoid limitations on command line length or C style comments
imposed by the host operating system. Use a # or ; at the beginning of a
line in the command file to include comments. You can also include
comments by delimiting them with /* and */. To specify options, surround
hyphens with quotation marks. For example, "--"quiet.

You can use the --cmd_file option multiple times to specify multiple files.
For instance, the following indicates that file3 should be compiled as
source and filel and file2 are --cmd_file files:

cl6x --cnd_file=filel --cnd_file=file2 file3

Suppresses the linker and overrides the --run_linker option, which
specifies linking. The --compile_only option's short form is -c. Use this
option when you have --run_linker specified in the C6X_C_OPTION
environment variable and you do not want to link. See Section 5.1.3.

34 Using the C/C++ Compiler

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior With Options

--define=name[=def]

--help

--include_path=directory

--keep_asm

--quiet

--run_linker

--skip_assembler

--src_interlist

--tool_version

--undefine=name

--verbose

Predefines the constant name for the preprocessor. This is equivalent to
inserting #define name def at the top of each C source file. If the
optional[=def] is omitted, the name is set to 1. The --define option's short
formis -D.

If you want to define a quoted string and keep the quotation marks, do
one of the following:

* For Windows, use --define=name="\"string def\"". For example,
--define=car="\"sedan\""

* For UNIX, use --define=name=
--define=car=""sedan™

* For Code Composer Studio, enter the definition in a file and include
that file with the --cmd_file option.

Displays the syntax for invoking the compiler and lists available options.
If the --help option is followed by another option or phrase, detailed
information about the option or phrase is displayed. For example, to see
information about debugging options use --help debug.

Adds directory to the list of directories that the compiler searches for
#include files. The --include_path option's short form is -l. You can use
this option several times to define several directories; be sure to
separate the --include_path options with spaces. If you do not specify a
directory name, the preprocessor ignores the --include_path option. See
Section 2.6.2.1.

Retains the assembly language output from the compiler or assembly
optimizer. Normally, the compiler deletes the output assembly language
file after assembly is complete. The --keep_asm option's short form is -k.

Suppresses banners and progress information from all the tools. Only
source filenames and error messages are output. The --quiet option's
short form is -q.

Runs the linker on the specified object files. The --run_linker option and
its parameters follow all other options on the command line. All
arguments that follow --run_linker are passed to the linker. The
--run_linker option's short form is -z. See Section 5.1.

Compiles only. The specified source files are compiled but not
assembled or linked. The --skip_assembler option's short form is -n. This
option overrides --run_linker. The output is assembly language output
from the compiler.

Invokes the interlist feature, which interweaves optimizer comments or
C/C++ source with assembly source. If the optimizer is invoked
(--opt_level=n option), optimizer comments are interlisted with the
assembly language output of the compiler, which may rearrange code
significantly. If the optimizer is not invoked, C/C++ source statements are
interlisted with the assembly language output of the compiler, which
allows you to inspect the code generated for each C/C++ statement. The
--src_interlist option implies the --keep_asm option. The --src_interlist
option's short form is -s.

Prints the version number for each tool in the compiler. No compiling
occurs.

Undefines the predefined constant name. This option overrides any
--define options for the specified constant. The --undefine option's short
formis -U.

Displays progress information and toolset version while compiling.
Resets the --quiet option.

string def™. For example,

SPRU187T-July 2011
Submit Documentation Feedback

Using the C/C++ Compiler 35

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior With Options www.ti.com

2.3.2 Miscellaneous Useful Options

Following are detailed descriptions of miscellaneous options:

--check_misra={all|required|
advisory|none|rulespec}

--fp_mode={relaxed|strict}

--fp_reassoc={on|off}

--keep_unneeded_statics

--no_const_clink

--misra_advisory={error|
warning|remark|suppress}

--misra_required={error|
warning|remark|suppress}

--preinclude=filename

Displays the specified amount or type of MISRA-C documentation. The
rulespec parameter is a comma-separated list of specifiers. See
Section 6.3 for details.

Supports relaxed floating-point mode. In this mode, if the result of a
double-precision floating-point expression is assigned to a
single-precision floating-point or an integer, the computations in the
expression are converted to single-precision computations. Any
double-precision constants in the expression are also converted to
single-precision if they can be correctly represented as single-precision
constants. This behavior does not conform with ISO; but it results in
faster code, with some loss in accuracy. In the following example, where
N is a number, iN=integer variable, fN=float variable, dN=double
variable:

il fl1+f2* 5.0->+, * are float, 5.0 is converted to 5.0f

il dl + d2 * d3 -> +, * are float

fi1=f2+f3* 1.1; ->+, * are float, 1.1 is converted to 1

To enable relaxed floating-point mode use the --fp_mode=relaxed option,
which also sets --fp_reassoc=on. To disable relaxed floating-point mode
use the --fp_mode=strict option, which also sets --fp_reassoc=off. The
default behavior is --fp_mode=strict.

If --strict_ansi is specified, --fp_mode=strict is set automatically. You can
enable the relaxed floating-point mode with strict ANSI mode by
specifying --fp_mode=relaxed after --strict_ansi.

Enables or disables the reassociation of floating-point arithmetic. If
--fp_mode=relaxed is specified, --fp_reassoc=on is set automatically. If
--strict_ansi is set, --fp_reassoc=off is set since reassociation of
floating-point arithmetic is an ANSI violation.

Does not delete unreferenced static variables. The parser by default
remarks about and then removes any unreferenced static variables. The
--keep_unneeded_statics option keeps the parser from deleting
unreferenced static variables and any static functions that are referenced
by these variable definitions. Unreferenced static functions will still be
removed.

Tells the compiler to not generate .clink directives for const global arrays.
By default, these arrays are placed in a .const subsection and
conditionally linked.

Sets the diagnostic severity for advisory MISRA-C:2004 rules.
Sets the diagnostic severity for required MISRA-C:2004 rules.

Includes the source code of filename at the beginning of the compilation.
This can be used to establish standard macro definitions. The filename is
searched for in the directories on the include search list. The files are
processed in the order in which they were specified.

36 Using the C/C++ Compiler

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Changing the Compiler's Behavior With Options

--printf_support={full|
nofloat|minimal}

--sat_reassoc={on|off}

2.3.3 Run-Time Model Options

Enables support for smaller, limited versions of the printf and sprintf
run-time-support functions. The valid values are:

full: Supports all format specifiers. This is the default.

nofloat: Excludes support for printing floating point values. Supports all
format specifiers except %f, %g, %G, %e, and %E.

minimal: Supports the printing of integer, char, or string values without
width or precision flags. Specifically, only the %%, %d, %0, %c, %s,
and %x format specifiers are supported

There is no run-time error checking to detect if a format specifier is used
for which support is not included. The --printf_support option precedes
the --run_linker option, and must be used when performing the final link.

Enables or disables the reassociation of saturating arithmetic.

These options are specific to the TMS302C6000 toolset. See the referenced sections for more

information.

--abi={eabil|coffabi}

--big_endian

--consultant

--debug_software_pipeline
--disable_software_pipelining
--fp_not_associative

--interrupt_threshold=n

--mem_model:const=type

--mem_model:data=type

--silicon_version=num
--small_enum

Specifies application binary interface (ABI). Default support is for
COFF ABI. See Section 2.15.

All code in an EABI application must be built for EABI. Make sure all
your libraries are available in EABI mode before migrating your
existing COFF ABI systems to C6000 EABI. See
http://tiexpressdsp.com/index.php/EABI_Support in_ C6000 Compiler
for full details.

Produces code in big-endian format. By default, little-endian code is
produced.

Generates compile-time loop information through the Compiler
Consultant Advice tool. See the TMS320C6000 Code Composer
Studio Online Help for more information about the Compiler
Consultant Advice tool.

Produces verbose software pipelining report. See Section 3.2.2.
Turns off software pipelining. See Section 3.2.1.

Compiler does not reorder floating-point operations. See
Section 3.11.

Specifies an interrupt threshold value n that sets the maximum cycles
the compiler can disable interrupts. See Section 2.12.

Allows const objects to be made far independently of the
--mem_model:data option. The type can be data, far, or
far_aggregates. See Section 7.1.5.3

Specifies data access model as type far, far_aggregates, or near.
Default is far_aggregates. See Section 7.1.5.1.

Selects the target CPU version. See Section 2.3.4.

By default, the C6000 compiler uses 32 bits for every enum. When
you use the --small_enum option, the smallest possible byte size for
the enumeration type is used. For example, enum example_enum
{first = -128, second = 0, third = 127} uses only one byte instead of 32
bits when the --small_enum option is used. Similarly, enum
a_short_enum {bottom = -32768, middle = 0, top = 32767} fits into
two bytes instead of four. Do not link object files compiled with the
--small_enum option with object files that have been compiled without
it. If you use the --small_enum option, you must use it with all of your
C/C++ files; otherwise, you will encounter errors that cannot be
detected until run time.

SPRU187T—-July 2011 37

Submit Documentation Feedback

Using the C/C++ Compiler

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://tiexpressdsp.com/index.php/EABI_Support_in_C6000_Compiler
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior With Options www.ti.com

--speculate_loads=n

--speculate_unknown_loads
--target_compatibility 6200

Specifies speculative load byte count threshold. Allows speculative
execution of loads with bounded addresses. See Section 3.2.3.1.

Allows speculative execution of loads with unbounded addresses.

Compiles C6400 code that is compatible with array alignment
restrictions of version 4.0 tools or C6200/C6700 object code. See
Section 2.13

--use_const_for_alias_analysis Uses const to disambiguate pointers.

--wchar_t={32|16}

Sets the size (in bits) of the C/C++ type wchar_t. The --abi=eabi
option is required when -wchar_t=32 is used. By default the compiler
generates 16-bit wchar_t. In COFF ABI mode, a warning is generated
and --wchar_t=32 is ignored. 16-bit wchar_t objects are not
compatible with the 32-bit wchar_t objects; an error is generated if
they are combined. When the --linux option is specified, it implies
--wchar_t=32 since Linux uses 32-bit extended characters.

2.3.4 Selecting Target CPU Version (--silicon_version Option)

Select the target CPU version using the last four digits of the TMS320C6000 part number. This selection
controls the use of target-specific instructions and alignment, such as --silicon_version=6701 or
--silicon_version=6412. Alternatively, you can also specify the family of the part, for example,
--silicon_version=6400 or --silicon_version=6700. If this option is not used, the compiler generates code
for the C6200 parts. If the --silicon_version option is not specified, the code generated runs on all C6000
parts; however, the compiler does not take advantage of target-specific instructions or alignment. This
option has the alias -mv. Common target CPU version options include:

3

235

-mv6200
-mv6700
-mv6700+
-mv6400+
-mv6740
-mv6600

Symbolic Debugging and Profiling Options

The following options are used to select symbolic debugging or profiling:

--profile:breakpt

--profile:power

--symdebug:coff

Disables optimizations that would cause incorrect behavior when using a
breakpoint-based profiler.

Enables power profiling support by inserting NOPs into the frame code.
These NOPs can then be instrumented by the power profiling tooling to
track the power usage of functions. If the power profiling tool is not used,
this option increases the cycle count of each function because of the
NOPs. The --profile:power option also disables optimizations that cannot
be handled by the power-profiler.

Enables symbolic debugging using the alternate STABS debugging
format. This may be necessary to allow debugging with older debuggers
or custom tools, which do not read the DWARF format. STABS format is
not supported for C6400+ or ELF.

38 Using the C/C++ Compiler

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior With Options

--symdebug:dwarf

--symdebug:keep_all_types

--symdebug:dwarf_
subsections=on|off

--symdebug:dwarf _
version={2|3}

--symdebug:none

--symdebug:profile_coff

--symdebug:skeletal

Generates directives that are used by the C/C++ source-level debugger
and enables assembly source debugging in the assembler. The
--symdebug:dwarf option's short form is -g. The --symdebug:dwarf option
disables many code generator optimizations, because they disrupt the
debugger. You can use the --symdebug:dwarf option with the --opt_level
(aliased as -0O) option to maximize the amount of optimization that is
compatible with debugging (see Section 3.15.1).

For more information on the DWARF debug format, see The DWARF
Debugging Standard.

Effects the ability to view unused types in the debugger that are from a
COFF executable. Use this option to view the details of a type that is
defined but not used to define any symbols. Such unused types are not
included in the debug information by default for COFF. However, in EABI
mode, all types are included in the debug information and this option has
no effect.

Changes the way the debug information is represented in the object file.
When the option is set to on, the resulting object file supports a rapid
form of type merging in the debugging information that is done in the
linker. If you have been using the --no_sym_merge linker option to
disable type merging of the debugging information in order to reduce link
time at the cost of increased .out file size, recompiling with
--symdebug:dwarf_subsections=on can realize a reasonable link time
without increasing the .out file size. The default behavior is off.

Specifies the DWARF debugging format version (2 or 3) to be generated
when --symdebug:dwarf or --symdebug:skeletal is specified. By default,
the compiler generates DWARF version 3 debug information. For more
information on Tl extensions to the DWARF language, see The Impact of
DWARF on Tl Object Files (SPRAABS).

Disables all symbolic debugging output. This option is not recommended;
it prevents debugging and most performance analysis capabilities.

Adds the necessary debug directives to the object file which are needed
by the profiler to allow function level profiling with minimal impact on
optimization (when used). Using --symdebug:coff may hinder some
optimizations to ensure that debug ability is maintained, while this option
will not hinder optimization. STABS format is not supported for C6400+
or ELF.

You can set breakpoints and profile on function-level boundaries in Code
Composer Studio, but you cannot single-step through code as with full
debug ability.

Generates as much symbolic debugging information as possible without
hindering optimization. Generally, this consists of global-scope
information only. This option reflects the default behavior of the compiler.

See Section 2.3.13 for a list of deprecated symbolic debugging options.

SPRU187T-July 2011
Submit Documentation Feedback

Using the C/C++ Compiler 39

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior With Options www.ti.com

2.3.6 Specifying Filenames

2.3.7

The input files that you specify on the command line can be C source files, C++ source files, assembly
source files, linear assembly files, or object files. The compiler uses filename extensions to determine the
file type.

Extension File Type

.asm, .abs, or .s* (extension begins with s) Assembly source

.c C source

.C Depends on operating system
.Cpp, .CXX, .cC C++ source

.obj .o* .dll .so Object

.sa Linear assembly

NOTE: Case Sensitivity in Filename Extensions

Case sensitivity in filename extensions is determined by your operating system. If your
operating system is not case sensitive, a file with a .C extension is interpreted as a C file. If
your operating system is case sensitive, a file with a .C extension is interpreted as a C++ file.

For information about how you can alter the way that the compiler interprets individual filenames, see
Section 2.3.7. For information about how you can alter the way that the compiler interprets and names the
extensions of assembly source and object files, see Section 2.3.10.

You can use wildcard characters to compile or assemble multiple files. Wildcard specifications vary by
system; use the appropriate form listed in your operating system manual. For example, to compile all of
the files in a directory with the extension .cpp, enter the following:

cl 6x *. cpp

NOTE: No Default Extension for Source Files is Assumed

If you list a filename called example on the command line, the compiler assumes that the
entire filename is example not example.c. No default extensions are added onto files that do
not contain an extension.

Changing How the Compiler Interprets Filenames

You can use options to change how the compiler interprets your filenames. If the extensions that you use
are different from those recognized by the compiler, you can use the filename options to specify the type
of file. You can insert an optional space between the option and the filename. Select the appropriate
option for the type of file you want to specify:

--ap_file=filename for a linear assembly source file
--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and an assembly language source file called assy,
use the --asm_file and --c_file options to force the correct interpretation:

cléx --c_file=file.s --asmfil e=assy

You cannot use the filename options with wildcard specifications.

40

Using the C/C++ Compiler SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Changing the Compiler's Behavior With Options

2.3.8 Changing How the Compiler Processes C Files

The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler
treats files with a .c extension as C files. See Section 2.3.9 for more information about filename extension
conventions.

2.3.9 Changing How the Compiler Interprets and Names Extensions

You can use options to change how the compiler program interprets filename extensions and names the
extensions of the files that it creates. The filename extension options must precede the filenames they
apply to on the command line. You can use wildcard specifications with these options. An extension can
be up to nine characters in length. Select the appropriate option for the type of extension you want to

specify:

--ap_extension=new extension for a linear assembly source file
--asm_extension=new extension for an assembly language file
--C_extension=new extension for a C source file
--Cpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--0bj_extension=new extension for an object file

The following example assembles the file fit.rrr and creates an object file named fit.o:
cl 6x --asmextension=.rrr --obj_extension=.0 fit.rrr

The period (.) in the extension is optional. You can also write the example above as:
cl 6x --asmextension=rrr --obj_extension=o0 fit.rrr

2.3.10 Specifying Directories

By default, the compiler program places the object, assembly, and temporary files that it creates into the
current directory. If you want the compiler program to place these files in different directories, use the
following options:

--abs_directory=directory Specifies the destination directory for absolute listing files. The default is
to use the same directory as the object file directory. For example:
cl 6x --abs_directory=d:\abso_|ist

--asm_directory=directory Specifies a directory for assembly files. For example:
cl 6x --asmdirectory=d:\assenbly

--list_directory=directory Specifies the destination directory for assembly listing files and
cross-reference listing files. The default is to use the same directory as
the object file directory. For example:
cl6x --list_directory=d:\listing

--0bj_directory=directory Specifies a directory for object files. For example:
cl 6x --obj _directory=d:\object
--output_file=filename Specifies a compilation output file name; can override --obj_directory . For

example:
cl 6x --output_file=transfer

--pp_directory=directory Specifies a preprocessor file directory for object files (default is .). For
example:
cl 6x --pp_directory=d:\preproc

--temp_directory=directory = Specifies a directory for temporary intermediate files. For example:
cl 6x --tenp_directory=d:\tenp

SPRU187T-July 2011 Using the C/C++ Compiler 41

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Changing the Compiler's Behavior With Options

13 TEXAS
INSTRUMENTS

www.ti.com

2.3.11 Assembler Options

Following are assembler options that you can use with the compiler. For more information, see the
TMS320C6000 Assembly Language Tools User's Guide.

--absolute_listing

--asm_define=name[=def]

--asm_dependency

--asm_includes

--asm_listing
--asm_undefine=name

--copy_file=filename

--cross_reference
--include_file=filename

--machine_regs

--N0_compress

--no_reload_errors

--output_all_syms

--strip_coff_underscore

--syms_ignore_case

Generates a listing with absolute addresses rather than section-relative
offsets.

Predefines the constant name for the assembler; produces a .set directive
for a constant or a .arg directive for a string. If the optional [=def] is
omitted, the name is set to 1. If you want to define a quoted string and
keep the quotation marks, do one of the following:

* For Windows, use --asm_define=name="\"string def\"". For example:
--asm define=car="\"sedan\""

* For UNIX, use --asm_define=name=
--asm defi ne=car='"sedan"'

string def™. For example:

* For Code Composer Studio, enter the definition in a file and include
that file with the --cmd_file option.

Performs preprocessing for assembly files, but instead of writing
preprocessed output, writes a list of dependency lines suitable for input to
a standard make utility. The list is written to a file with the same name as
the source file but with a .ppa extension.

Performs preprocessing for assembly files, but instead of writing
preprocessed output, writes a list of files included with the #include
directive. The list is written to a file with the same name as the source file
but with a .ppa extension.

Produces an assembly listing file.

Undefines the predefined constant name. This option overrides any
--asm_define options for the specified name.

Copies the specified file for the assembly module; acts like a .copy
directive. The file is inserted before source file statements. The copied file
appears in the assembly listing files.

Produces a symbolic cross-reference in the listing file.

Includes the specified file for the assembly module; acts like a .include
directive. The file is included before source file statements. The included
file does not appear in the assembly listing files.

Displays reg operands as machine registers in the assembly file for
debugging purposes.

Prevents compression in the assembler. For C6400+, C6740, and C6600,
compression is the changing of 32-bit instructions to 16-bit instructions,
where possible/profitable.

Turns off all reload-related loop buffer error messages in assembly code
for C6400+, C6740, and C6600.

Puts labels in the symbol table. Label definitions are written to the COFF
symbol table for use with symbolic debugging.

Aids in transitioning hand-coded assembly from COFF to EABI.

Makes letter case insignificant in the assembly language source files. For
example, --syms_ignore_case makes the symbols ABC and abc
equivalent. If you do not use this option, case is significant (this is the
default).

Using the C/C++ Compiler

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior With Options

2.3.12 Dynamic Linking

The C6000 v7.3 Code Generation Tools (CGT) support dynamic linking provided you build with EABI. For
details on dynamic linking with the C6000 CGT, see the TMS320C6000 Assembly Language Tools User's
Guide and http://processors.wiki.ti.com/index.php/C6000 Dynamic_Linking.

If you are not already familiar with the limitations of EABI support in the C6000 compiler, see
http://processors.wiki.ti.com/index.php/EABI _Support in_ C6000 Compiler.

For more information about support for C6000 Linux ABI in the C6000 Code Generation Tools, see
http://processors.wiki.ti.com/index.php/C6000 Linux_Support

Table 2-31 and Table 2-32 provide a brief summary of the compiler and linker options that are related to
support for the Dynamic Linking Model in the C6000 CGT.

Table 2-31. Compiler Options For Dynamic Linking

Option Description
--abi=eabi Specifies that EABI run-time model is to be used.
--dsht Generates addressing via Dynamic Segment Base Table.

--export_all_cpp_vtbl

--import_undef[=off|on]

--import_helper_functions

--inline_plt[=off|on]

--linux

--pic

--visibility=={hidden|fhidden|
default|protected}

Exports C++ virtual tables by default.

Specifies that all global symbol references that are not defined in a module are imported. Default
is on.

Specifies that all compiler generated calls to run-time-support functions are treated as calls to
imported functions.

Inlines the import function call stub. Default is on.
Generates C6000 Linux ABI compliant code.
Generates position independent code suitable for a dynamic shared object.

Specifies a default visibility to be assumed for global symbols.

-wchar_t Generates 32-bit wchar_t type when --abi=eabi is specified.
Table 2-32. Linker Options For Dynamic Linking
Option Description

--dsbt_index=int

--dsbt_size=int

--dynamic[=exe]
--dynamic=lib
--export=symbol
--fini=symbol
--import=symbol
--init=symbol
--rpath=dir
--runpath=dir
--shared

--soname=string

--sysv

Requests a specific Data Segment Base Table (DSBT) index to be associated with the current
output file. If the DSBT model is being used, and you do not request a specific DSBT index for the
output file, then a DSBT index is assigned to the module at load time.

Specifies the size of the Data Segment Base Table (DSBT) for the current output file, in words. If
the DSBT model is being used, this option can be used to override the default DSBT size (8
words).

Specifies that the result of a link will be a lightweight dynamic executable.

Specifies that the result of a link will be a dynamic library.

Specifies that symbol is exported by the ELF object that is generated for this link.

Specifies the symbol name of the termination code for the output file currently being linked.
Specifies that symbol is imported by the ELF object that is generated for this link.

Specifies the symbol name of the initialization code for the output file currently being linked.
Adds a directory to the beginning of the dynamic library search path.

Adds a directory to the end of the dynamic library search path.

Generates an ELF dynamic shared object (DSO)

Specifies shared object name to be used to identify this ELF object to the any downstream ELF
object consumers.

Generates SysV ELF dynamic object module.

SPRU187T-July 2011
Submit Documentation Feedback

Using the C/C++ Compiler 43

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking
http://processors.wiki.ti.com/index.php/EABI_Support_in_C6000_Compiler
http://processors.wiki.ti.com/index.php/C6000_Linux_Support
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Controlling the Compiler Through Environment Variables www.ti.com

2.3.13 Deprecated Options

Several compiler options have been deprecated. The compiler continues to accept these options, but they
are not recommended for use. Future releases of the tools will not support these options. Table 2-33 lists
the deprecated options and the options that have replaced them.

Table 2-33. Compiler Backwards-Compatibility Options Summary

Old Option Effect New Option

-gp Allows function-level profiling of optimized code --symdebug:dwarf or -g

-gt Enables symbolic debugging using the alternate STABS --symdebug:coff
debugging format

-gw Fnables symbolic debugging using the DWARF debugging --symdebug:dwarf or -g
ormat

Additionally, the --symdebug:profile_coff option has been added to enable function-level profiling of
optimized code with symbolic debugging using the STABS debugging format (the --symdebug:coff or -gt
option).

Since C6400+, C6740, and C6600 produce only DWARF debug information, the -gp, -gt/--symdebug:coff,
and --symdebug:profile_coff options are not supported for C6400+, C6740, and C6600.

2.4 Controlling the Compiler Through Environment Variables
An environment variable is a system symbol that you define and assign a string to. Setting environment
variables is useful when you want to run the compiler repeatedly without re-entering options, input
filenames, or pathnames.
NOTE: C_OPTION and C_DIR
The C_OPTION and C_DIR environment variables are deprecated. Use the device-specific
environment variables instead.
2.4.1 Setting Default Compiler Options (C6X_C_OPTION)
You might find it useful to set the compiler, assembler, and linker default options using the
C6X_C_OPTION environment variable. If you do this, the compiler uses the default options and/or input
filenames that you name C6X_C_OPTION every time you run the compiler.
Setting the default options with these environment variables is useful when you want to run the compiler
repeatedly with the same set of options and/or input files. After the compiler reads the command line and
the input filenames, it looks for the C6X_C_OPTION environment variable and processes it.
The table below shows how to set the C6X_C_OPTION environment variable. Select the command for
your operating system:
Operating System Enter
UNIX (Bourne shell) C6X_C_OPTION=" option, [option, . . .]"; export C6X_C_OPTION
Windows set C6X_C_OPTION= option, [;option, . . .]
Environment variable options are specified in the same way and have the same meaning as they do on
the command line. For example, if you want to always run quietly (the --quiet option), enable C/C++
source interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the
C6X_C_OPTION environment variable as follows:
set C6X_C OPTION=--quiet --src_interlist --run_linker
44 Using the C/C++ Compiler SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS
INSTRUMENTS

www.ti.com Controlling the Compiler Through Environment Variables

2.4.2

In the following examples, each time you run the compiler, it runs the linker. Any options following
--run_linker on the command line or in C6X_C_OPTION are passed to the linker. Thus, you can use the
C6X_C_OPTION environment variable to specify default compiler and linker options and then specify
additional compiler and linker options on the command line. If you have set --run_linker in the environment
variable and want to compile only, use the compiler --compile_only option. These additional examples
assume C6X_C_OPTION is set as shown above:

cl 6x *c ; conpiles and |inks
cl6x --conpile_only *.c ; only conpiles
cl6x *.c --run_linker Ink.cnd ; conpiles and links using a command file

cl6x --conmpile_only *.c --run_linker |nk.cnd
; only conpiles (--conpile_only overrides --run_linker)

For details on compiler options, see Section 2.3. For details on linker options, see the Linker Description
chapter in the TMS320C6000 Assembly Language Tools User's Guide.

Naming an Alternate Directory (C6X_C_DIR)

The linker uses the C6X_C_DIR environment variable to name alternate directories that contain object
libraries. The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) C6X_C_DIR=" pathname, ; pathname, ;..."; export C6X_C_DIR
Windows set C6X_C_DIR= pathname, ; pathname, ;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:
+ Pathnames must be separated with a semicolon.

* Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after
the semicolon in the following is ignored:

set C6X_C Dl R=c:\path\one\to\tools ; c:\path\two\to\tools

* Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set C6X _C DIR=c:\first path\to\tools;d:\second path\to\tools

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset C6X_C DIR
Windows set C6X_C DI R=
SPRU187T—-July 2011 Using the C/C++ Compiler 45

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
Precompiled Header Support www.ti.com
2.5 Precompiled Header Support
Precompiled header files may reduce the compile time for applications whose source files share a
common set of headers, or a single file which has a large set of header files. Using precompiled headers,
some recompilation is avoided thus saving compilation time.
There are two ways to use precompiled header files. One is the automatic precompiled header file
processing and the other is called the manual precompiled header file processing.
2.5.1 Automatic Precompiled Header
The option to turn on automatic precompiled header processing is: --pch. Under this option, the compile
step takes a snapshot of all the code prior to the header stop point, and dump it out to a file with suffix
.pch. This snapshot does not have to be recompiled in the future compilations of this file or compilations of
files with the same header files.
The stop point typically is the first token in the primary source file that does not belong to a preprocessing
directive. For example, in the following the stopping point is before int i:
#i ncl ude "x. h"
#i ncl ude "y. h"
int i;
Carefully organizing the include directives across multiple files so that their header files maximize common
usage can increase the compile time savings when using precompiled headers.
A precompiled header file is produced only if the header stop point and the code prior to it meet certain
requirements.
2.5.2 Manual Precompiled Header
You can manually control the creation and use of precompiled headers by using several command line
options. You specify a precompiled header file with a specific flename as follows:
--create_pch=filename
The --use_pch=filename option specifies that the indicated precompiled header file should be used for this
compilation. If this precompiled header file is invalid, if its prefix does not match the prefix for the current
primary source file for example, a warning is issued and the header file is not used.
If --create_pch=filename or --use_pch=filename is used with --pch_dir, the indicated filename, which can
be a path name, is tacked on to the directory name, unless the filename is an absolute path name.
The --create_pch, --use_pch, and --pch options cannot be used together. If more than one of these
options is specified, only the last one is applied. In manual mode, the header stop points are determined
in the same way as in automatic mode. The precompiled header file applicability is determined in the
same manner.
2.5.3 Additional Precompiled Header Options
The --pch_verbose option displays a message for each precompiled header file that is considered but not
used. The --pch_dir=pathname option specifies the path where the precompiled header file resides.
46 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Controlling the Preprocessor

2.6 Controlling the Preprocessor

This section describes specific features that control the preprocessor, which is part of the parser. A
general description of C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard
C/C++ preprocessing functions, which are built into the first pass of the compiler. The preprocessor

handles:

* Macro definitions and expansions

* #include files
+ Conditional compilation

» Various preprocessor directives, specified in the source file as lines beginning with the # character

The preprocessor produces self-explanatory error messages. The line number and the filename where the
error occurred are printed along with a diagnostic message.

2.6.1 Predefined Macro Names

The compiler maintains and recognizes the predefined macro names listed in Table 2-34.

Table 2-34. Predefined C6000 Macro Names

Macro Name

Description

__DATE__®
__FILE__®
__LINE__®
__STDbC__®

__STDC_VERSION_ _
__TI_32BIT_LONG_ _
__TI_40BIT_LONG_ _
__TI_COMPILER_VERSION_ _

__TI_EABI_ _

__TI_GNU_ATTIBUTE_SUPPORT_ _

__TI_STRICT_ANSI_MODE__

_ _TIME_ @
_BIG_ENDIAN
_INLINE

_LITTLE_ENDIAN

_TMS320C6X
_TMS320C6200
_TMS320C6400
_TMS320C6400_PLUS
_TMS320C6600
_TMS320C6700
_TMS320C6700_PLUS
_TMS320C6740
__TMS320C6X_ _

Expands to the compilation date in the form mmm dd yyyy
Expands to the current source filename
Expands to the current line number

Defined to indicate that compiler conforms to ISO C Standard. See Section 6.1 for
exceptions to ISO C conformance.

C standard macro
Defined to 1 if the EABI ABI is enabled (see Section 2.15); otherwise, it is undefined.
Defined to 1 if _ _TI_32BIT_LONG_ _ is not defined; otherwise, it is undefined.

Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not
contain a decimal. For example, version 3.2.1 is represented as 3002001. The leading
zeros are dropped to prevent the number being interpreted as an octal.

Defined to 1 if the EABI is enabled (see Section 2.15); otherwise, it is undefined.

Defined if GCC extensions are enabled (the --gcc option is used); otherwise, it is
undefined.

Defined if strict ANSI/ISO mode is enabled (the --strict_ansi option is used); otherwise, it
is undefined.

Expands to the compilation time in the form "hh:mm:ss"

Defined if big-endian mode is selected (the --big_endian option is used); otherwise, it is
undefined.

Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.
Regardless of any optimization, always undefined when --no_inlining is used.

Defined if little-endian mode is selected (the --big_endian option is not used); otherwise, it
is undefined.

Always defined

Defined if target is C6200

Defined if target is C6400, C6400+, C6740, or C6600
Defined if target is C6400+, C6740, or C6600

Defined if target is C6600

Defined if target is C6700, C6700+, C6740, or C6600
Defined if target is C6700+, C6740, or C6600

Defined if target is C6740 or C6600

Always defined for use as alternate name for _TMS320C6x

@ Specified by the 1SO standard

SPRU187T-July 2011
Submit Documentation Feedback

Using the C/C++ Compiler 47

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Controlling the Preprocessor www.ti.com

2.6.2

You can use the names listed in Table 2-34 in the same manner as any other defined name. For example,
printf ("% %" , __TIME_, _ DATE);

translates to a line such as:
printf ("% %" , "13:58:17", "Jan 14 1997");

The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source statements from another file. When
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can
be a complete pathname, partial path information, or a filename with no path information.

« If you enclose the filename in double quotes (" "), the compiler searches for the file in the following
directories in this order:

1. The directory of the file that contains the #include directive and in the directories of any files that
contain that file.

2. Directories named with the --include_path option.
3. Directories set with the C6X_C_DIR environment variable.

» If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following
directories in this order:

1. Directories named with the --include_path option.
2. Directories set with the C6X_C_DIR environment variable.

See Section 2.6.2.1 for information on using the --include_path option. See Section 2.4.2 for more
information on input file directories.

2.6.2.1 Changing the #include File Search Path (--include_path Option)

The --include_path option names an alternate directory that contains #include files. The --include_path
option's short form is -I. The format of the --include_path option is:

--include_path=directoryl [--include_path= directory2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each
--include_path option names one directory. In C source, you can use the #include directive without
specifying any directory information for the file; instead, you can specify the directory information with the
--include_path option. For example, assume that a file called source.c is in the current directory. The file
source.c contains the following directive statement:

#i nclude "alt.h"

Assume that the complete pathname for alt.h is:

UNIX ltools/files/alt.h
Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:

Operating System Enter
UNIX cl 6x --include_path=/tools/files source.c
Windows cl 6x --include_path=c:\tools\files source.c
48 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS

www.ti.com Controlling the Preprocessor

2.6.3

2.6.4

2.6.5

2.6.6

NOTE: Specifying Path Information in Angle Brackets

If you specify the path information in angle brackets, the compiler applies that information
relative to the path information specified with --include_path options and the C6X_C_DIR
environment variable.

For example, if you set up C6X_C_DIR with the following command:

C6X_C DI R "/usr/include;/usr/ucbh"; export C6X C DR

or invoke the compiler with the following command:
cl 6x --include_path=/usr/include file.c

and file.c contains this line:
#i ncl ude <sys/proc. h>

the result is that the included file is in the following path:
/usr/include/sys/proc.h

Generating a Preprocessed Listing File (--preproc_only Option)

The --preproc_only option allows you to generate a preprocessed version of your source file with an
fe“>(<at.ension of .pp. The compiler's preprocessing functions perform the following operations on the source

» Each source line ending in a backslash (\) is joined with the following line.

» Trigraph sequences are expanded.

+ Comments are removed.

» #include files are copied into the file.

* Macro definitions are processed.

» All macros are expanded.

» All other preprocessing directives, including #line directives and conditional compilation, are expanded.

Continuing Compilation After Preprocessing (--preproc_with_compile Option)

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your source
code. To override this feature and continue to compile after your source code is preprocessed, use the
--preproc_with_compile option along with the other preprocessing options. For example, use
--preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file
with a .pp extension, and compile your source code.

Generating a Preprocessed Listing File With Comments (--preproc_with_comment
Option)

The --preproc_with_comment option performs all of the preprocessing functions except removing
comments and generates a preprocessed version of your source file with a .pp extension. Use the
--preproc_with_comment option instead of the --preproc_only option if you want to keep the comments.

Generating a Preprocessed Listing File With Line-Control Information
(--preproc_with_line Option)

By default, the preprocessed output file contains no preprocessor directives. To include the #line
directives, use the --preproc_with_line option. The --preproc_with_line option performs preprocessing only
and writes preprocessed output with line-control information (#line directives) to a file named as the
source file but with a .pp extension.

SPRU187T—-July 2011 Using the C/C++ Compiler 49
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
Understanding Diagnostic Messages www.ti.com
2.6.7 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

The --preproc_dependency option performs preprocessing only, but instead of writing preprocessed

output, writes a list of dependency lines suitable for input to a standard make utility. If you do not supply

an optional filename, the list is written to a file with the same name as the source file but with a .pp
extension.
2.6.8 Generating a List of Files Included With the #include Directive (--preproc_includes

Option)

The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output,

writes a list of files included with the #include directive. If you do not supply an optional filename, the list is

written to a file with the same name as the source file but with a .pp extension.
2.6.9 Generating a List of Macros in a File (--preproc_macros Option)

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not

supply an optional filename, the list is written to a file with the same name as the source file but with a .pp

extension. Predefined macros are listed first and indicated by the comment /* Predefined */. User-defined
macros are listed next and indicated by the source filename.
2.7 Understanding Diagnostic Messages

One of the compiler's primary functions is to report diagnostics for the source program. The new linker

also reports diagnostics. When the compiler or linker detects a suspect condition, it displays a message in

the following format:

"file.c", line n : diagnostic severity : diagnostic message

"file.c" The name of the file involved
linen: The line number where the diagnostic applies

diagnostic severity The diagnostic message severity (severity category descriptions follow)

diagnostic message The text that describes the problem

Diagnostic messages have an associated severity, as follows:

+ Afatal error indicates a problem so severe that the compilation cannot continue. Examples of such
problems include command-line errors, internal errors, and missing include files. If multiple source files
are being compiled, any source files after the current one will not be compiled.

* An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation
continues, but object code is not generated.

* A warning indicates something that is valid but questionable. Compilation continues and object code is
generated (if no errors are detected).

* Aremark is less serious than a warning. It indicates something that is valid and probably intended, but
may need to be checked. Compilation continues and object code is generated (if no errors are
detected). By default, remarks are not issued. Use the --issue_remarks compiler option to enable
remarks.

Diagnostics are written to standard error with a form like the following example:

"test.c", line 5: error: a break statement may only be used within a | oop or swtch

br eak;

By default, the source line is omitted. Use the --verbose_diagnostics compiler option to enable the display

of the source line and the error position. The above example makes use of this option.

The message identifies the file and line involved in the diagnostic, and the source line itself (with the

position indicated by the ~ character) follows the message. If several diagnostics apply to one source line,

each diagnostic has the form shown; the text of the source line is displayed several times, with an
appropriate position indicated each time.
50 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Understanding Diagnostic Messages

271

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric
identifier be included in the diagnostic message. When displayed, the diagnostic identifier also indicates
whether the diagnostic can have its severity overridden on the command line. If the severity can be
overridden, the diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is
present. For example:

"Test_nane.c", line 7: error #64-D: decl arati on does not decl are anything
struct {};
N
"Test_nanme.c", line 9: error #77: this declaration has no storage class or type specifier

XXXXX;
N

Because an error is determined to be discretionary based on the error severity associated with a specific
context, an error can be discretionary in some cases and not in others. All warnings and remarks are
discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are
listed following the initial error message:
"test.c", line 4: error: nore than one instance of overloaded function "f"
mat ches the argunent |ist:
function "f(int)"
function "f(float)"
argunent types are: (double)
f(1.5);
N

In some cases, additional context information is provided. Specifically, the context information is useful
when the front end issues a diagnostic while doing a template instantiation or while generating a
constructor, destructor, or assignment operator function. For example:

"test.c", line 7: error: "A::A()" is inaccessible
B X;
N

detected during inplicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.

Controlling Diagnostics

The C/C++ compiler provides diagnostic options to control compiler- and linker-generated diagnostics. The
diagnostic options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_error=num to recategorize
the diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_remark=num to
recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostics.

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate compile. Then use --diag_suppress=num to suppress the
diagnostic. You can only suppress discretionary diagnostics.

--diag_warning=num Categorizes the diagnostic identified by num as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_warning=num to
recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostics.

SPRU187T—-July 2011 Using the C/C++ Compiler 51
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Understanding Diagnostic Messages www.ti.com

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and
--diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See Section 2.7.

--emit_warnings_as_ Treats all warnings as errors. This option cannot be used with the
errors --no_warnings option. The --diag_remark option takes precedence over this
option. This option takes precedence over the --diag_warning option.
--issue_remarks Issues remarks (honserious warnings), which are suppressed by default.
--no_warnings Suppresses warning diagnostics (errors are still issued).

--set_error_limit=num Sets the error limit to num, which can be any decimal value. The compiler
abandons compiling after this number of errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

--write_diagnostics_file Produces a diagnostics information file with the same source file name with an
.err extension. (The --write_diagnostics_file option is not supported by the
linker.)

2.7.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic messages issued by the compiler.
You control the linker diagnostic messages in a similar manner.

int one();
int I;
int main()
{
switch (1){
case 1;
return one ();
br eak;
defaul t:
return O;
br eak;
}
}

If you invoke the compiler with the --quiet option, this is the result:

"err.c", line 9: warning: statenment is unreachable
"err.c", line 12: warning: statement is unreachable

Because it is standard programming practice to include break statements at the end of each case arm to
avoid the fall-through condition, these warnings can be ignored. Using the --display_error_number option,
you can find out the diagnostic identifier for these warnings. Here is the result:

[err.c]
"err.c", line 9: warning #111-D: statement is unreachabl e
"err.c", line 12: warning #111-D: statement is unreachable

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this
warning as a remark. This compilation now produces no diagnostic messages (because remarks are
disabled by default).

Although this type of control is useful, it can also be extremely dangerous. The compiler often emits
messages that indicate a less than obvious problem. Be careful to analyze all diagnostics emitted before
using the suppression options.

52

Using the C/C++ Compiler SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com Other Messages
2.8 Other Messages
Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability
to find specified files, are usually fatal. They are identified by the symbol >> preceding the message.
2.9 Generating Cross-Reference Listing Information (--gen_acp_xref Option)
The --gen_acp_xref option generates a cross-reference listing file that contains reference information for
each identifier in the source file. (The --gen_acp_xref option is separate from --cross_reference, which is
an assembler rather than a compiler option.) The cross-reference listing file has the same name as the
source file with a .crl extension.
The information in the cross-reference listing file is displayed in the following format:
sym-id name X filename line number column number
sym-id An integer uniquely assigned to each identifier
name The identifier name
X One of the following values:
D Definition
d Declaration (not a definition)
M Modification
A Address taken
U Used
C Changed (used and modified in a single operation)
R Any other kind of reference
E Error; reference is indeterminate
filename The source file
line number The line number in the source file
column number The column number in the source file
2.10 Generating a Raw Listing File (--gen_acp_raw Option)
The --gen_acp_raw option generates a raw listing file that can help you understand how the compiler is
preprocessing your source file. Whereas the preprocessed listing file (generated with the --preproc_only,
--preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor options) shows a
preprocessed version of your source file, a raw listing file provides a comparison between the original
source line and the preprocessed output. The raw listing file has the same name as the corresponding
source file with an .rl extension.
The raw listing file contains the following information:
» Each original source line
+ Transitions into and out of include files
+ Diagnostics
» Preprocessed source line if nontrivial processing was performed (comment removal is considered
trivial; other preprocessing is nontrivial)
Each source line in the raw listing file begins with one of the identifiers listed in Table 2-35.
Table 2-35. Raw Listing File Identifiers
Identifier Definition
N Normal line of source
X Expanded line of source. It appears immediately following the normal line of source
if nontrivial preprocessing occurs.
S Skipped source line (false #if clause)
SPRU187T—-July 2011 Using the C/C++ Compiler 53

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Using Inline Function Expansion

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-35. Raw Listing File Identifiers (continued)

Identifier Definition

L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present only
when the change is due to entry/exit of an include file. Possible values of key are:

1 = entry into an include file
2 = exit from an include file

The --gen_acp_raw option also includes diagnostic identifiers as defined in Table 2-36.

Table 2-36. Raw Listing File Diagnostic Identifiers

Diagnostic Identifier Definition
E Error
F Fatal
R Remark
w Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 2-36 that indicates the severity of the diagnostic
filename The source file

line number The line number in the source file

column number The column number in the source file

diagnostic The message text for the diagnostic

Diagnostics after the end of file are indicated as the last line of the file with a column number of 0. When
diagnostic message text requires more than one line, each subsequent line contains the same file, line,
and column information but uses a lowercase version of the diagnostic identifier. For more information

about diagnostic messages, see Section 2.7.

2.11 Using Inline Function Expansion

When an inline function is called, the C/C++ source code for the function is inserted at the point of the call.
This is known as inline function expansion. Inline function expansion is advantageous in short functions for

the following reasons:

There are several types of inline function expansion:
* Inlining with intrinsic operators (intrinsics are always inlined)

* Automatic inlining

» Definition-controlled inlining with the unguarded inline keyword
» Definition-controlled inlining with the guarded inline keyword

NOTE: Function Inlining Can Greatly Increase Code Size

Expanding functions inline increases code size, especially inlining a function that is called in
a number of places. Function inlining is optimal for functions that are called only from a small
number of places and for small functions. If your code size seems too large, see Section 3.5.

54 Using the C/C++ Compiler

SPRU187T-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using Inline Function Expansion

2.11.1 Inlining Intrinsic Operators

There are many intrinsic operators for the C6000. All of them are automatically inlined by the compiler.
The inlining happens automatically whether or not you use the optimizer.

For details about intrinsics, and a list of the intrinsics, see Section 7.5.5.

2.11.2 Automatic Inlining

When optimizing with the --opt_level=3 or --opt_level=2 option (aliased as -O3 or -02), the compiler
automatically inlines certain functions. For more information, see Section 3.13.

2.11.3 Unguarded Definition-Controlled Inlining

The inline keyword specifies that a function is expanded inline at the point at which it is called rather than
by using standard calling procedures. The compiler performs inline expansion of functions declared with
the inline keyword.

You must invoke the optimizer with any --opt_level option (--opt_level=0, --opt_level=1, --opt_level=2, or
--opt_level=3) to turn on definition-controlled inlining. Automatic inlining is also turned on when using
--opt_level=3.

The --no_inlining option turns off definition-controlled inlining. This option is useful when you need a
certain level of optimization but do not want definition-controlled inlining.

Example 2-1 shows usage of the inline keyword, where the function call is replaced by the code in the
called function.

Example 2-1. Using the Inline Keyword

inline float volune_sphere(float r)

{
return 4.0/3.0 * Pl * r * r * r;

}

int foo(...)

{

vol ume = vol une_sphere(radi us);

2.11.4 Guarded Inlining and the _INLINE Preprocessor Symbol

When declaring a function in a header file as static inline, you must follow additional procedures to avoid a
potential code size increase when inlining is turned off with --no_inlining or the optimizer is not run.

To prevent a static inline function in a header file from causing an increase in code size when inlining gets
turned off, use the following procedure. This allows external-linkage when inlining is turned off; thus, only
one function definition will exist throughout the object files.

* Prototype a static inline version of the function. Then, prototype an alternative, nonstatic,
externally-linked version of the function. Conditionally preprocess these two prototypes with the
_INLINE preprocessor symbol, as shown in Example 2-2.

» Create an identical version of the function definition in a .c or .cpp file, as shown in Example 2-3.

In the following examples there are two definitions of the strlen function. The first (Example 2-2), in the
header file, is an inline definition. This definition is enabled and the prototype is declared as static inline
only if _INLINE is true (_INLINE is automatically defined for you when the optimizer is used and
--no_inlining is not specified).

The second definition (see Example 2-3) for the library, ensures that the callable version of strlen exists
when inlining is disabled. Since this is not an inline function, the _INLINE preprocessor symbol is
undefined (#undef) before string.h is included to generate a noninline version of strlen’s prototype.

SPRU187T—-July 2011 Using the C/C++ Compiler 55

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Using Inline Function Expansion

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2-2. Header File string.h

/***/

/* string.h vXx.Xxx (Excer pt ed) */
/* Copyright (c) 1993-2011 Texas Instrunents | ncor porated */
/***/
#i fdef _I NLINE

#define _IDECL static inline

#el se

#define _| DECL extern _CODE_ACCESS

#endi f

_IDECL size_t strlen(const char *_string);

#i fdef _I NLINE

AR R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* strlen *

AR AR R R RS R R R R R R R LRy

static inline size_t strlen(const char *string)

{
size_t n = (size_t)-1;
const char *s = string - 1;
do n++; while (*++s);
return n

}

#endi f

Example 2-3. Library Definition File

AR AR R R R R R R R R R R LY

/* strlen */
/**/

#undef _I NLI NE

#i ncl ude <string. h>

{
_CODE_ACCESS size_t strlen(cont char * string)
size_t n = (size_t)-1;
const char *s = string - 1;
do n++; while (*++s);
return n;
}

56 Using the C/C++ Compiler

Copyright © 2011, Texas Instruments Incorporated

SPRU187T-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

www.ti.com

TEXAS
INSTRUMENTS

Interrupt Flexibility Options (--interrupt_threshold Option)

2.11.

2.12

5 Inlining Restrictions

There are several restrictions on what functions can be inlined for both automatic inlining and
definition-controlled inlining. Functions with local static variables or a variable number of arguments are
not inlined, with the exception of functions declared as static inline. In functions declared as static inline,
expansion occurs despite the presence of local static variables. In addition, a limit is placed on the depth
of inlining for recursive or nonleaf functions. Furthermore, inlining should be used for small functions or
functions that are called in a few places (though the compiler does not enforce this).

At a given call site, a function may be disqualified from inlining if it:

* Is not defined in the current compilation unit

* Never returns

* Isrecursive

*+ Has a FUNC_CANNOT_INLINE pragma

* Has a variable length argument list

» Has a different number of arguments than the call site

+ Has an argument whose type is incompatible with the corresponding call site argument
* Has a class, structe or union parameter

» Contains a volatile local variable or argument

* Is not declared inline and contains an asm() statement that is not a comment

* Is not declared inline and it is main()

* Is not declared inline and it is an interrupt function

* Is not declared inline and returns void but its return value is needed.

* Is not declared inline and will require too much stack space for local array or structure variables.

Interrupt Flexibility Options (--interrupt_threshold Option)

On the C6000 architecture, interrupts cannot be taken in the delay slots of a branch. In some instances
the compiler can generate code that cannot be interrupted for a potentially large number of cycles. For a
given real-time system, there may be a hard limit on how long interrupts can be disabled.

The --interrupt_threshold=n option specifies an interrupt threshold value n. The threshold value specifies
the maximum number of cycles that the compiler can disable interrupts. If the n is omitted, the compiler
assumes that the code is never interrupted. In Code Composer Studio, to specify that the code is never
interrupted, select the Interrupt Threshold check box and leave the text box blank in the Build Options
dialog box on the Compiler tab, Advanced category.

If the --interrupt_threshold=n option is not specified, then interrupts are only explicitly disabled around
software pipelined loops. When using the --interrupt_threshold=n option, the compiler analyzes the loop

structure and loop counter to determine the maximum number of cycles it takes to execute a loop. If it can
determine that the maximum number of cycles is less than the threshold value, the compiler generates the

fastest/optimal version of the loop. If the loop is smaller than six cycles, interrupts are not able to occur
because the loop is always executing inside the delay slots of a branch. Otherwise, the compiler
generates a loop that can be interrupted (and still generate correct results—single assignment code),
which in most cases degrades the performance of the loop.

The --interrupt_threshold=n option does not comprehend the effects of the memory system. When
determining the maximum number of execution cycles for a loop, the compiler does not compute the
effects of using slow off-chip memory or memory bank conflicts. It is recommended that a conservative
threshold value is used to adjust for the effects of the memory system.

See Section 6.9.11 or the TMS320C6000 Programmer's Guide for more information.

SPRU187T-July 2011 Using the C/C++ Compiler
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

57

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Linking C6400 Code With C6200/C6700/Older C6400 Object Code www.ti.com

RTS Library Files Are Not Built With the --interrupt_threshold Option

NOTE: The run-time-support library files provided with the compiler are not built with the interrupt
flexibility option. Refer to the readme file to see how the run-time-support library files were
built for your release. See Section 8.5 to build your own run-time-support library files with the
interrupt flexibility option.

Special Cases With the --interrupt_threshold Option

NOTE: The --interrupt_threshold=0 option generates the same code to disable interrupts around
software-pipelined loops as when the --interrupt_threshold option is not used.

The --interrupt_threshold option (the threshold value is omitted) means that no code is added
to disable interrupts around software pipelined loops, which means that the code cannot be
safely interrupted. Also, loop performance does not degrade because the compiler is not
trying to make the loop interruptible by ensuring that there is at least one cycle in the loop
kernel that is not in the delay slot of a branch instruction.

2.13 Linking C6400 Code With C6200/C6700/Older C6400 Object Code

In order to facilitate certain packed-data optimizations, the alignment of top-level arrays for the C6400
family was changed from 4 bytes to 8 bytes. (For C6200 and C6700 code, the alignment for top-level
arrays is always 4 bytes.)

If you are linking C6400/C6400+/C6740/C6600 with C6200/C6700 code or older C6400 code, you may
need to take steps to ensure compatibility. The following lists the potential alignment conflicts and possible
solutions.

Potential alignment conflicts occur when:

* Linking new C6400/C6400+/C6740/C6600 code with any C6400 code already compiled with the 4.0
tools.

» Linking new C6400/C6400+/C6740/C6600 code with code already compiled with any version of the
tools for the C6200 or C6700 family.

Solutions (pick one):

* Recompile the entire application with the --silicon_version=6400 switch. This solution, if possible, is
recommended because it can lead to better performance.

+ Compile the new code with the --target_compatibility 6200 option. The --target_compatibility 6200
option changes the alignment of top-level arrays to 4 bytes when the --silicon_version=6400 or
--silicon_version=6400+ option is used.

The alignment of top-level arrays for the C6600 family is 16 bytes to facilitate compatibility with future
C6600 family devices. This change in alignment does not have any compatibility issues with the
C6400/C6400+/C6740 device code as the C6600 can safely accept top-level arrays aligned to an 8-byte
boundary.

2.14 Using Interlist

The compiler tools include a feature that interlists C/C++ source statements into the assembly language
output of the compiler. The interlist feature enables you to inspect the assembly code generated for each
C statement. The interlist behaves differently, depending on whether or not the optimizer is used, and
depending on which options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the
interlist on a program called function.c, enter:
cl6x --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output
file. The output assembly file, function.asm, is assembled normally.

58 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using Interlist

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between
the code generator and the assembler. It reads both the assembly and C/C++ source files, merges them,
and writes the C/C++ statements into the assembly file as comments.

Using the --c_src_interlist option can cause performance and/or code size degradation.
Example 2-4 shows a typical interlisted assembly file.

For more information about using the interlist feature with the optimizer, see Section 3.14.

SPRU187T—-July 2011

Using the C/C++ Compiler 59
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Controlling Application Binary Interface www.ti.com

Example 2-4. An Interlisted Assembly Language File

_main:

STW .D2 B3, *SP- - (12)
STW . D2 A10, *+SP(8)

B S1 _printf

NOP 2

MVKL .81 SL1+0, A0

MVKH .S1 SL1+0, AO
| MVKL . S2 RLO, B3

STW . D2 A0, *+SP(4)
| MVKH . S2 RLO, B3
RLO: CALL OCCURS

ZERO .L1 A0

W L1 A0, Ad

LDW D2 *+SP(8) , AL0
LDW . D2 *++SP(12) , B3
NOP 4

B . S2 B3

NOP 5

BRANCH OCCURS

2.15 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object code to link together,
regardless of its source, and allows the resulting executable to run on any system that supports that ABI

Object modules conforming to different ABIs cannot be linked together. The linker detects this situation
and generates an error.

The C6000 compiler supports two ABIs. The ABI is chosen through the --abi option as follows:

* COFF ABI (--abi=coffabi)

The COFF ABI is the original ABI format. There is no COFF to ELF conversion possible; recompile or
reassemble assembly code.

« C6000 EABI (--abi=eabi)
Use this option to select the C6000 Embedded Application Binary Interface (EABI).

All code in an EABI application must be built for EABI. Make sure all your libraries are available in
EABI mode before migrating your existing COFF ABI systems to C6000 EABI. See
http://tiexpressdsp.com/index.php/EABI_Support_in_C6000 Compiler for full details.

For more details on the different ABIs, see Section 6.11.

60 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://tiexpressdsp.com/index.php/EABI_Support_in_C6000_Compiler
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Enabling Entry Hook and Exit Hook Functions

2.16 Enabling Entry Hook and Exit Hook Functions

An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a
routine that is called upon exit of each function. Applications for hooks include debugging, trace, profiling,
and stack overflow checking.

Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise,
the default entry hook function name is __entry_hook.
--entry_parm{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);

The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void

hook(void);
--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise,
the default exit hook function name is __exit_hook.
--exit_parm{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);

The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void
hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given
signature. If a declaration or definition of the hook function appears in the compilation unit compiled with
the options, it must agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C (or assembly) without being
concerned with name mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as
other inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same
function can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any
function which itself has hook calls inserted. To help prevent this, hooks are not generated for inline
functions, or for the hook functions themselves.

You can use the --remove_hooks_when_inlining option to remove entry/exit hooks for functions that are
auto-inlined by the optimizer.

See Section 6.9.21 for information about the NO_HOOKS pragma.

SPRU187T—-July 2011 Using the C/C++ Compiler 61

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

62 Using the C/C++ Compiler SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS

Chapter

3

SPRU187T-July 2011

Optimizing Your Code

The compiler tools can perform many optimizations to improve the execution speed and reduce the size of
C and C++ programs by simplifying loops, software pipelining, rearranging statements and expressions,
and allocating variables into registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are
performed at each level. This chapter also describes how you can use the Interlist feature when
performing optimization and how you can profile or debug optimized code.

Topic Page
3.1 INVOKING OPLIMIZALION .eneeeeieieie et ettt e e e e e e e e e e a e eae e e enas 64
3.2 Optimizing Software PipeliNiNgcciiiiiiiiii e e e e aes 65
TR T = L= To [V g o = T 10 Yo o 1= PP 74
3.4 Utilizing the Loop Buffer Using SPLOOP on C6400+, C6740, and C6600 75
3.5 Reducing Code Size (--opt_for_space (0r -ms) OPtioN)ccveveieieieininieieieieaeaeaenanns 75
3.6 Performing File-Level Optimization (--opt_level=3 option)c.cocvviiiiiiiiiiiiiciinennns 76
3.7 Performing Program-Level Optimization (--program_level compile and

o] o) Al (=AVA=] i T o1 4 [0 4 1)) I PP 77
3.8 Using Feedback Directed Optimizationccviiiiiiiiiiiiiiiiiiieeer e aa e e eees 79
3.9 Using Profile Information to Get Better Program Cache Layout and Analyze Code

L0011 r= T | = 83
3.10 Indicating Whether Certain Aliasing Techniques Are Usedcocovviiiiiiiiiinininnnns 93
3.11 Prevent Reordering of Associative Floating-Point Operationsccccieieiienenene. 95
3.12 Use Caution With asm Statements in Optimized Codecccoeviiiiiiiiiiiiiiiiiiiiieieenn, 96
3.13 Automatic Inline Expansion (--auto_inlin@ OPtion)cecvieieiiiiiiiiiiiiiiieeieieeeeans 96
3.14 Using the Interlist Feature With Optimizationcoveiiiiiiiiiiii e 97
3.15 Debugging and Profiling Optimized COOecccuiuiiieiiiiiiiciiiee e eaeeens 99
3.16 Controlling Code Size VErsusS SPEEAccuiuiuiuieieieiiiiiiieeaia et eerenenensaraenes 100
3.17 What Kind of Optimization Is Being Performed?ccoeiuiiiiiiiiiiiiiiiiieieeenn 101

SPRU187T—-July 2011 Optimizing Your Code 63

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Invoking Optimization www.ti.com

3.1

Invoking Optimization

The C/C++ compiler is able to perform various optimizations. High-level optimizations are performed in the
optimizer and low-level, target-specific optimizations occur in the code generator. Use high-level
optimization levels, such as --opt_level=2 and --opt_level=3, to achieve optimal code.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option
on the compiler command line. You can use -On to alias the --opt_level option. The n denotes the level of
optimization (0, 1, 2, and 3), which controls the type and degree of optimization.

+ --opt_level=0 or -O0
— Performs control-flow-graph simplification
— Allocates variables to registers
— Performs loop rotation
— Eliminates unused code
— Simplifies expressions and statements
— Expands calls to functions declared inline
+ --opt_level=1 or -O1
Performs all --opt_level=0 (-O0) optimizations, plus:
Performs local copy/constant propagation
Removes unused assignments
Eliminates local common expressions
+ --opt_level=2 or -02
Performs all --opt_level=1 (-O1) optimizations, plus:
— Performs software pipelining (see Section 3.2)
— Performs loop optimizations
— Eliminates global common subexpressions
— Eliminates global unused assignments
— Converts array references in loops to incremented pointer form
— Performs loop unrolling

The optimizer uses --opt_level=2 (-O2) as the default if you use --opt_level (-O) without an optimization
level.

+ --opt_level=3 or -O3
Performs all --opt_level=2 (-O2) optimizations, plus:
— Removes all functions that are never called
— Simplifies functions with return values that are never used
— Inlines calls to small functions

— Reorders function declarations; the called functions attributes are known when the caller is
optimized

— Propagates arguments into function bodies when all calls pass the same value in the same
argument position

— ldentifies file-level variable characteristics
If you use --opt_level=3 (-O3), see Section 3.6 and Section 3.7 for more information.

The levels of optimizations described above are performed by the stand-alone optimization pass. The
code generator performs several additional optimizations, particularly processor-specific optimizations. It
does so regardless of whether you invoke the optimizer. These optimizations are always enabled,
although they are more effective when the optimizer is used.

64

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Software Pipelining

Do Not Lower the Optimization Level to Control Code Size

NOTE: To reduce code size, do not lower the level of optimization. Instead, use the --opt_for_space
option to control the code size/performance tradeoff. Higher optimization levels (--opt_level
or -O) combined with high --opt_for_space levels result in the smallest code size. For more
information, see Section 3.5.

The --opt_level=n (-O n) Option Applies to the Assembly Optimizer

NOTE: The --opt_level=n (-On) option should also be used with the assembly optimizer. Although
the assembly optimizer does not perform all the optimizations described here, key
optimizations such as software pipelining and loop unrolling require the --opt_level (-O)
option.

3.2 Optimizing Software Pipelining

Software pipelining schedules instructions from a loop so that multiple iterations of the loop execute in
parallel. At optimization levels --opt_level=2 (or -O2) and --opt_level=3 (or -O3), the compiler usually
attempts to software pipeline your loops. The --opt_for_space option also affects the compiler's decision to
attempt to software pipeline loops. In general, code size and performance are better when you use the
--opt_level=2 or --opt_level=3 options. (See Section 3.1.)

Figure 3-1 illustrates a software-pipelined loop. The stages of the loop are represented by A, B, C, D, and
E. In this figure, a maximum of five iterations of the loop can execute at one time. The shaded area
represents the loop kernel. In the loop kernel, all five stages execute in parallel. The area above the kernel
is known as the pipelined loop prolog, and the area below the kernel is known as the pipelined loop epilog.

Figure 3-1. Software-Pipelined Loop

Al
B1 A2
1 5o A3 Pipelined-loop prolog
D1 c2 B3 A4
E1 D2 C3 B4 A5 Kernel
E2 D3 C4 B5
E3 D4 C5
e o5 Pipelined-loop epilog
E5

If you enter comments on instructions in your linear assembly input file, the compiler moves the comments
to the output file along with additional information. It attaches a 2-tuple <x, y> to the comments to specify
the iteration and cycle of the loop an instruction is on in the software pipeline. The zero-based number x
represents the iteration the instruction is on during the first execution of the loop kernel. The zero-based
number y represents the cycle that the instruction is scheduled on within a single iteration of the loop.

For more information about software pipelining, see the TMS320C6000 Programmer's Guide.

SPRU187T—-July 2011 Optimizing Your Code 65
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Optimizing Software Pipelining www.ti.com

3.2.1 Turn Off Software Pipelining (--disable_software_pipelining Option)

At optimization levels --opt_level=2 (or -O2) and -O3, the compiler attempts to software pipeline your
loops. You might not want your loops to be software pipelined for debugging reasons. Software-pipelined
loops are sometimes difficult to debug because the code is not presented serially. The
--disable_software_pipelining option affects both compiled C/C++ code and assembly optimized code.

Software Pipelining May Increase Code Size

NOTE: Software pipelining without the use of SPLOOP can lead to significant increases in code
size. To control code size for loops that get software pipelined, it is preferable to use the
--opt_for_space option rather than the --disable_software_pipelining option. The
--opt_for_space option is capable of disabling non-SPLOOP software pipelining if necessary
to achieve code size savings, but it does not affect the SPLOOP capability of C64x+ and
C674x devices. SPLOOP does not significantly increase code size, but can greatly speed up
a loop. Using --disable_software_pipelining disables all software pipelining including

SPLOOP.
3.2.2 Software Pipelining Information
The compiler embeds software pipelined loop information in the .asm file. This information is used to
optimize C/C++ code or linear assembly code.
The software pipelining information appears as a comment in the .asm file before a loop and for the
assembly optimizer the information is displayed as the tool is running. Example 3-1 illustrates the
information that is generated for each loop.
The --debug_software_pipeline option adds additional information displaying the register usage at each
cycle of the loop kernel and displays the instruction ordering of a single iteration of the software pipelined
loop.
More Details on Software Pipelining Information
NOTE: Referto the TMS320C6000 Programmer’s Guide for details on the information and
messages that can appear in the Software Pipelining Information comment block before each
loop.
66 Optimizing Your Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Optimizing Software Pipelining

Example 3-1. Software Pipelining Information

SOFTWARE PI PELI NE | NFORMATI ON

Known M ni mum Trip Count

Known Maxi mum Trip Count

Known Max Trip Count Factor
Loop Carried Dependency Bound(”)
Unpartitioned Resource Bound
Partitioned Resource Bound(*)
Resource Partition:

abdBDNODNDDN

A-si de B- si de
.L units 2 3
.S units 4
.D units 1
.Munits 0
. X cross paths 1
. T address paths 1
Long read paths 0
Long wite paths 0
Logical ops (.LS) 0
Addi tion ops (.LSD) 6
Bound(.L .S .LS) 3
Bound(.L .S .D .LS .LSD) 5

(.L or .Sunit)
(.Lor .Sor .Dunit)

AP WFRPROOOWOOM

*

* Searching for software pipeline schedul e at

* ii =5 Register is live too |long

* ii =6 Ddnot find schedule

* ii =7 Schedule found with 3 iterations in paralle
0 * done

* Epil og not entirely renoved

* Col | apsed epil og stages 1

* Prol og not renoved

0 * Col | apsed prol og stages 0

* M ninumrequired nenory pad : 2 bytes

- %

* M ni mum safe trip count 2

; K o o e *

The terms defined below appear in the software pipelining information. For more information on each

term, see the TMS320C6000 Programmer's Guide.

* Loop unroll factor. The number of times the loop was unrolled specifically to increase performance
based on the resource bound constraint in a software pipelined loop.

* Known minimum trip count. The minimum number of times the loop will be executed.

* Known maximum trip count. The maximum number of times the loop will be executed.

+ Known max trip count factor. Factor that would always evenly divide the loops trip count. This
information can be used to possibly unroll the loop.

* Loop label. The label you specified for the loop in the linear assembly input file. This field is not
present for C/C++ code.

* Loop carried dependency bound. The distance of the largest loop carry path. A loop carry path
occurs when one iteration of a loop writes a value that must be read in a future iteration. Instructions
that are part of the loop carry bound are marked with the ~ symbol.

« Initiation interval (ii). The number of cycles between the initiation of successive iterations of the loop.

SPRU187T-July 2011 Optimizing Your Code 67

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Optimizing Software Pipelining www.ti.com

The smaller the initiation interval, the fewer cycles it takes to execute a loop.

Resource bound. The most used resource constrains the minimum initiation interval. If four
instructions require a .D unit, they require at least two cycles to execute (4 instructions/2 parallel .D
units).

Unpartitioned resource bound. The best possible resource bound values before the instructions in
the loop are partitioned to a particular side.

Partitioned resource bound (*). The resource bound values after the instructions are partitioned.

Resource partition. This table summarizes how the instructions have been partitioned. This
information can be used to help assign functional units when writing linear assembly. Each table entry
has values for the A-side and B-side registers. An asterisk is used to mark those entries that determine
the resource bound value. The table entries represent the following terms:

— .L units is the total number of instructions that require .L units.

— .S units is the total number of instructions that require .S units.

— .D units is the total number of instructions that require .D units.

— .M units is the total number of instructions that require .M units.

— .Xcross paths is the total number of .X cross paths.

— .T address paths is the total number of address paths.

— Long read path is the total number of long read port paths.

— Long write path is the total number of long write port paths.

— Logical ops (.LS) is the total number of instructions that can use either the .L or .S unit.

— Addition ops (.LSD) is the total number of instructions that can use either the .L or .S or .D unit

Bound(.L .S .LS). The resource bound value as determined by the number of instructions that use the
.L and .S units. It is calculated with the following formula:

Bound(.L .S .LS) =ceil((L+.S+.LS)/2)

Bound(.L .S .D .LS .LSD). The resource bound value as determined by the number of instructions that
use the .D, .L, and .S units. It is calculated with the following formula:

Bound(.L .S .D .LS .SLED) = ceil((.L + .S + .D + .LS + .LSD) / 3)

Minimum required memory pad. The number of bytes that are read if speculative execution is
enabled. See Section 3.2.3 for more information.

3.2.2.1 Loop Disqualified for Software Pipelining Messages

The following messages appear if the loop is completely disqualified for software pipelining:

Bad loop structure. This error is very rare and can stem from the following:
— An asm statement inserted in the C code inner loop

— Parallel instructions being used as input to the Linear Assembly Optimizer
— Complex control flow such as GOTO statements and breaks

Loop contains a call. Sometimes the compiler may not be able to inline a function call that is in a
loop. Because the compiler could not inline the function call, the loop could not be software pipelined.

Too many instructions. There are too many instructions in the loop to software pipeline.

Software pipelining disabled. Software pipelining has been disabled by a command-line option, such
as when using the --disable_software_pipelining option, not using the --opt_level=2 (or -O2) or
--opt_level=3 (or -O3) option, or using the --opt_for_space=2 or --opt_for_space=3 option.
Uninitialized trip counter. The trip counter may not have been set to an initial value.

Suppressed to prevent code expansion. Software pipelining may be suppressed because of the
--opt_for_space=1 option. When the --opt_for_space=1 option is used, software pipelining is disabled
in less promising cases to reduce code size. To enable pipelining, use --opt_for_space=0 or omit the
--opt_for_space option altogether.

Loop carried dependency bound too large. If the loop has complex loop control, try
--speculate_loads according to the recommendations in Section 3.2.3.2.

68

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Software Pipelining

+ Cannot identify trip counter. The loop trip counter could not be identified or was used incorrectly in
the loop body.

SPRU187T—-July 2011 Optimizing Your Code 69

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Optimizing Software Pipelining www.ti.com

3.2.2.2 Pipeline Failure Messages

The following messages can appear when the compiler or assembly optimizer is processing a software
pipeline and it fails:

.

Address increment is too large. An address register's offset must be adjusted because the offset is
out of range of the C6000's offset addressing mode. You must minimize address register offsets.

Cannot allocate machine registers. A software pipeline schedule was found, but it cannot allocate
machine registers for the schedule. Simplification of the loop may help.

The register usage for the schedule found at the given ii is displayed. This information can be used
when writing linear assembly to balance register pressure on both sides of the register file. For
example:

ii = 11 Cannot allocate nachine registers

Regs Live Always : 3/0 (A/ B-side)

Max Regs Live : 20/14

Max Condo Regs Live : 2/1

— Regs Live Always. The number of values that must be assigned a register for the duration of the
whole loop body. This means that these values must always be allocated registers for any given
schedule found for the loop.

— Max Regs Live. Maximum number of values live at any given cycle in the loop that must be
allocated to a register. This indicates the maximum number of registers required by the schedule
found.

— Max Cond Regs Live. Maximum number of registers live at any given cycle in the loop kernel that
must be allocated to a condition register.

Cycle count too high. Never profitable. With the schedule that the compiler found for the loop, it is
more efficient to use a non-software-pipelined version.

Did not find schedule. The compiler was unable to find a schedule for the software pipeline at the
given ii (iteration interval). You should simplify the loop and/or eliminate loop carried dependencies.

Iterations in parallel > minimum or maximum trip count. A software pipeline schedule was found,
but the schedule has more iterations in parallel than the minimum or maximum loop trip count. You
must enable redundant loops or communicate the trip information.

Speculative threshold exceeded. It would be necessary to speculatively load beyond the threshold
currently specified by the --speculate_loads option. You must increase the --speculate_loads threshold
as recommended in the software-pipeline feedback located in the assembly file.

Register is live too long. A register must have a value that exists (is live) for more than ii cycles. You
may insert MV instructions to split register lifetimes that are too long.

If the assembly optimizer is being used, the .sa file line numbers of the instructions that define and use
the registers that are live too long are listed after this failure message. For example:

ii =9 Register is live too |long

| 10| -> | 17|
This means that the instruction that defines the register value is on line 10 and the instruction that uses
the register value is on line 17 in the .sa file.

Too many predicates live on one side. The C6000 has predicate, or conditional, registers available
for use with conditional instructions. There are five predicate registers on the C6200 and C6700, and
six predicate registers on the C6400, C6400+, and C6700+. There are two or three on the A side and
three on the B side. Sometimes the particular partition and schedule combination requires more than
these available registers.

Schedule found with N iterations in parallel. (This is not a failure message.) A software pipeline
schedule was found with N iterations executing in parallel.

Too many reads of one register. The same register can be read a maximum of four times per cycle
with the C6200 or C6700 core. The C6400 core can read the same register any number of times per
cycle.

Trip variable used in loop - Cannot adjust trip count. The loop trip counter has a use in the loop
other than as a loop trip counter.

70

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS
www.ti.com Optimizing Software Pipelining
3.2.2.3 Register Usage Table Generated by the --debug_software_pipeline Option

3.2.3

The --debug_software_pipeline option places additional software pipeline feedback in the generated

assembly file. This information includes a single scheduled iteration view of the software pipelined loop.

If software pipelining succeeds for a given loop, and the --debug_software_pipeline option was used
during the compilation process, a register usage table is added to the software pipelining information
comment block in the generated assembly code.

The numbers on each row represent the cycle number within the loop kernel.

Each column represents one register on the TMS320C6000. The registers are labeled in the first three
rows of the register usage table and should be read columnwise.

An * in a table entry indicates that the register indicated by the column header is live on the kernel
execute packet indicated by the cycle number labeling each row.
An example of the register usage table follows:

Searching for software pipeline schedul e at
ii = 15 Schedule found with 2 iterations in parallel

Regi ster Usage Tabl e:

AAAAAAAAAAAAAAAA	BBBBBBBBBBBBBBBB
0000000000111111	0000000000111111
0123456789012345	0123456789012345
- ceem e $orononeoo	

*

*

*

*

*

*

*

*

*
;* O. I*** * %k k% I*** *kkkkk I
;* l: |**** * k k% |*** *kkkk*k |
;* 2: |**** * % % % |*** *k kk kK |
;* 3. I * % * %k k k% I*** *kkkkk I
;* 4: | * % *kk k% |*** *kkkk*k |
;* 5: | * % * %k k k% |*** *kkk kK |
;* 6. I * % * %k k k% I********** I
;* 7: |*** *kk k% |~k~k *kkkkk*k |
;* 8: |**** * %k k k% |*********** |
;* 9. I********** I** *kkkkkk*k I
;* lo |*********** |~k~k *kkkkkkkk*k |
;* ll: |*********** |** *kkkkkkk*k |
;* 12. I********** I************ I
;* 13 |**** *kk k% |~k~k *kkkkkkk * |
;* 14: |*** * %k k k% |*** *kkk kK * |
D * R +

*

This example shows that on cycle O (first execute packet) of the loop kernel, registers A0, Al, A2, A6, A7,

A8, A9, BO, B1, B2, B4, B5, B6, B7, B8, and B9 are all live during this cycle.

Collapsing Prologs and Epilogs for Improved Performance and Code Size

When a loop is software pipelined, a prolog and epilog are generally required. The prolog is used to pipe

up the loop and epilog is used to pipe down the loop.

In general, a loop must execute a minimum number of iterations before the software-pipelined version can

be safely executed. If the minimum known trip count is too small, either a redundant loop is added or
software pipelining is disabled. Collapsing the prolog and epilog of a loop can reduce the minimum trip
count necessary to safely execute the pipelined loop.

Collapsing can also substantially reduce code size. Some of this code size growth is due to the redundant

loop. The remainder is due to the prolog and epilog.

SPRU187T-July 2011 Optimizing Your Code
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

71

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Optimizing Software Pipelining www.ti.com

The prolog and epilog of a software-pipelined loop consists of up to p-1 stages of length ii, where p is the
number of iterations that are executed in parallel during the steady state and ii is the cycle time for the
pipelined loop body. During prolog and epilog collapsing the compiler tries to collapse as many stages as
possible. However, over-collapsing can have a negative performance impact. Thus, by default, the
compiler attempts to collapse as many stages as possible without sacrificing performance. When the
--opt_for_space=0 or --opt_for_space=1 options are invoked, the compiler increasingly favors code size
over performance.

3.2.3.1 Speculative Execution

When prologs and epilogs are collapsed, instructions might be speculatively executed, thereby causing
loads to addresses beyond either end of the range explicitly read within the loop. By default, the compiler
cannot speculate loads because this could cause an illegal memory location to be read. Sometimes, the
compiler can predicate these loads to prevent over execution. However, this can increase register
pressure and might decrease the total amount collapsing which can be performed.

When the --speculate_loads=n option is used, the speculative threshold is increased from the default of 0
to n. When the threshold is n, the compiler can allow a load to be speculatively executed as the memory
location it reads will be no more than n bytes before or after some location explicitly read within the loop. If
the n is omitted, the compiler assumes the speculative threshold is unlimited. To specify this in Code
Composer Studio, select the Speculate Threshold check box and leave the text box blank in the Build
Options dialog box on the Compiler tab, Advanced category.

Collapsing can usually reduce the minimum safe trip count. If the minimum known trip count is less than
the minimum safe trip count, a redundant loop is required. Otherwise, pipelining must be suppressed. Both
these values can be found in the comment block preceding a software pipelined loop.

D * Known M ni mum Tri p Count o1

* M nimum safe trip count 7

If the minimum safe trip count is greater than the minimum known trip count, use of --speculate_loads is
highly recommended, not only for code size, but for performance.

When using --speculate_loads, you must ensure that potentially speculated loads will not cause illegal
reads. This can be done by padding the data sections and/or stack, as needed, by the required memory
pad in both directions. The required memory pad for a given software-pipelined loop is also provided in the
comment block for that loop.

* M ni mum r equi red nmenory pad : 8 bytes

3.2.3.2 Selecting the Best Threshold Value

When a loop is software pipelined, the comment block preceding the loop provides the following
information:

* Required memory pad for this loop
* The minimum value of n needed to achieve this software pipeline schedule and level of collapsing
* Suggestion for a larger value of n to use which might allow additional collapsing

This information shows up in the comment block as follows:

* M nimumrequired menory pad : 5 bytes
* M ni mum t hreshol d val ue : --specul ate_| oads=7
* For further inprovenent on this loop, try option --specul ate_| oads=14
For safety, the example loop requires that array data referenced within this loop be preceded and followed
by a pad of at least 5 bytes. This pad can consist of other program data. The pad will not be modified. In
many cases, the threshold value (namely, the minimum value of the argument to --speculate_loads that is
needed to achieve a particular schedule and level of collapsing) is the same as the pad. However, when it
is not, the comment block will also include the minimum threshold value. In the case of this loop, the
threshold value must be at least 7 to achieve this level of collapsing.

72

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Software Pipelining

However, you need to consider whether a larger threshold value would facilitate additional collapsing. This
information is also provided, if applicable. For example, in the above comment block, a threshold value of
14 might facilitate further collapsing.

SPRU187T-July 2011 Optimizing Your Code 73

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Redundant Loops www.ti.com

3.3

Redundant Loops

Every loop iterates some number of times before the loop terminates. The number of iterations is called
the trip count. The variable used to count each iteration is the trip counter. When the trip counter reaches
a limit equal to the trip count, the loop terminates. The C6000 tools use the trip count to determine
whether or not a loop can be pipelined. The structure of a software pipelined loop requires the execution
of a minimum number of loop iterations (a minimum trip count) in order to fill or prime the pipeline.

The minimum trip count for a software pipelined loop is determined by the number of iterations executing
in parallel. In Figure 3-1, the minimum trip count is five. In the following example A, B, and C are
instructions in a software pipeline, so the minimum trip count for this single-cycle software pipelined loop is
three.

A
B A
C B A «Three iterations in parallel = minimum trip count
C B
C

When the C6000 tools cannot determine the trip count for a loop, then by default two loops and control
logic are generated. The first loop is not pipelined, and it executes if the run-time trip count is less than the
loop's minimum trip count. The second loop is the software pipelined loop, and it executes when the
run-time trip count is greater than or equal to the minimum trip count. At any given time, one of the loops
is a redundant loop. For example:

foo(N /* Nis the trip count */

for (1=0; I <N I++) /* | is the trip counter */

}

After finding a software pipeline for the loop, the compiler transforms foo() as below, assuming the
minimum trip count for the loop is 3. Two versions of the loop would be generated and the following
comparison would be used to determine which version should be executed:

foo(N)
{
if (N< 3)
{
for (I=0; I <N [|++) /* Unpi pel ined version */

}

el se

for (1=0; I <N |++) /* Pipelined version */
}
}

foo(50); /* Execute software pipelined | oop */
foo(2); /* Execute loop (unpipelined)*/

You may be able to help the compiler avoid producing redundant loops with the use of
--program_level_compile --opt_level=3 (see Section 3.7) or the use of the MUST_ITERATE pragma (see
Section 6.9.19).

Turning Off Redundant Loops
NOTE: Specifying any --opt_for_space option turns off redundant loops.

74

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS
INSTRUMENTS

www.ti.com Utilizing the Loop Buffer Using SPLOOP on C6400+, C6740, and C6600

3.4

3.5

Utilizing the Loop Buffer Using SPLOOP on C6400+, C6740, and C6600

The C6400+, C6740, and C6600 ISAs have a loop buffer which improves performance and reduces code
size for software pipelined loops. The loop buffer provides the following benefits:

* Code size. A single iteration of the loop is stored in program memory.

« Interrupt latency. Loops executing out of the loop buffer are interruptible.

* Improves performance for loops with unknown trip counts and eliminates redundant loops.
* Reduces or eliminates the need for speculated loads.

* Reduces power usage.

You can tell that the compiler is using the loop buffer when you find SPLOOP(D/W) at the beginning of a
software pipelined loop followed by an SPKERNEL at the end. Refer to the TMS320C6400/C6400+ CPU
and Instruction Set Reference Guide for information on SPLOOP.

When the --opt_for_space option is not used, the compiler will not use the loop buffer if it can find a faster
software pipelined loop without it. When using the --opt_for_space option, the compiler will use the loop
buffer when it can.

The compiler does not generate code for the loop buffer (SPLOOP/D/W) when any of the following occur:
+ i (initiation interval) > 14 cycles

« Dynamic length (of a single iteration) > 48 cycles

* The optimizer completely unrolls the loop

» Code contains elements that disqualify normal software pipelining (call in loop, complex control code in
loop, etc.). See the TMS320C6000 Programmer's Guide for more information.

Reducing Code Size (--opt_for_space (or -ms) Option)

When using the --opt_level=n option (or -On), you are telling the compiler to optimize your code. The
higher the value of n, the more effort the compiler invests in optimizing your code. However, you might still
need to tell the compiler what your optimization priorities are. By default, when --opt_level=2 or
-opt_level=3 is specified, the compiler optimizes primarily for performance. (Under lower optimization
levels, the priorities are compilation time and debugging ease.) You can adjust the priorities between
performance and code size by using the code size flag --opt_for_space=n. The --opt_for_space=0,
--opt_for_space=1, --opt_for_space=2 and --opt_for_space=3 options increasingly favor code size over
performance.

When you specify --silicon_version=6400+ in conjunction with the --opt_for_space option, the code will be
tailored for compression. That is, more instructions are tailored so they will more likely be converted from
32-bit to 16-bit instructions when assembled.

It is recommended that a code size flag not be used with the most performance-critical code. Using
--opt_for_space=0 or --opt_for_space=1 is recommended for all but the most performance-critical code.
Using --opt_for_space=2 or --opt_for_space=3 is recommended for seldom-executed code. Either
--opt_for_space=2 or --opt_for_space=3 should be used if you need minimum code size. It is generally
recommended that the code size flags be combined with --opt_level=2 or --opt_level=3.

Disabling Code-Size Optimizations or Reducing the Optimization Level

NOTE: If you reduce optimization and/or do not use code size flags, you are disabling code-size
optimizations and sacrificing performance.

The --opt_for_space Option is Equivalent to --opt_for_space=0

NOTE: If you use --opt_for_space with no code size level number specified, the option level
defaults to --opt_for_space=0.

SPRU187T-July 2011 Optimizing Your Code 75
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Performing File-Level Optimization (--opt_level=3 option) www.ti.com

3.6

3.6.1

3.6.2

Performing File-Level Optimization (--opt_level=3 option)

The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level
optimization. You can use the --opt_level=3 option alone to perform general file-level optimization, or you
can combine it with other options to perform more specific optimizations. The options listed in Table 3-1
work with --opt_level=3 to perform the indicated optimization:

Table 3-1. Options That You Can Use With --opt_level=3

If You ... Use this Option See

Have files that redeclare standard library functions --std_lib_func_defined Section 3.6.1
--std_lib_func_redefined

Want to create an optimization information file --gen_opt_level=n Section 3.6.2
Want to compile multiple source files --program_level_compile Section 3.7

Do Not Lower the Optimization Level to Control Code Size

NOTE: When trying to reduce code size, do not lower the level of optimization, as you might see an
increase in code size. Instead, use the --opt_for_space option to control the code.

Controlling File-Level Optimization (--std_lib_func_def Options)

When you invoke the compiler with the --opt_level=3 option, some of the optimizations use known
properties of the standard library functions. If your file redeclares any of these standard library functions,
these optimizations become ineffective. Use Table 3-2 to select the appropriate file-level optimization
option.

Table 3-2. Selecting a File-Level Optimization Option

If Your Source File... Use this Option
Declares a function with the same name as a standard library function --std_lib_func_redefined
Contains but does not alter functions declared in the standard library --std_lib_func_defined

Does not alter standard library functions, but you used the --std_lib_func_redefined or --std_lib_func_not_defined
--std_lib_func_defined option in a command file or an environment variable. The
--std_lib_func_not_defined option restores the default behavior of the optimizer.

Creating an Optimization Information File (--gen_opt_info Option)

When you invoke the compiler with the --opt_level=3 option, you can use the --gen_opt_info option to
create an optimization information file that you can read. The number following the option denotes the
level (0, 1, or 2). The resulting file has an .nfo extension. Use Table 3-3 to select the appropriate level to

append to the option.

Table 3-3. Selecting a Level for the --gen_opt_info Option

If you... Use this option

Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 --gen_opt_level=0
option in a command file or an environment variable. The --gen_opt_level=0 option restores the
default behavior of the optimizer.

Want to produce an optimization information file --gen_opt_level=1
Want to produce a verbose optimization information file --gen_opt_level=2

76

Optimizing Your Code SPRU187T-July 2011
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS

www.ti.com Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options)

3.7

3.7.1

Performing Program-Level Optimization (--program_level_compile and --opt_level=3
options)

You can specify program-level optimization by using the --program_level _compile option with the
--opt_level=3 option (aliased as -03). With program-level optimization, all of your source files are compiled
into one intermediate file called a module. The module moves to the optimization and code generation
passes of the compiler. Because the compiler can see the entire program, it performs several
optimizations that are rarely applied during file-level optimization:

» If a particular argument in a function always has the same value, the compiler replaces the argument
with the value and passes the value instead of the argument.

« If a return value of a function is never used, the compiler deletes the return code in the function.
« If a function is not called directly or indirectly by main(), the compiler removes the function.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to
generate an information file. See Section 3.6.2 for more information.

In Code Composer Studio, when the --program_level _compile option is used, C and C++ files that have
the same options are compiled together. However, if any file has a file-specific option that is not selected
as a project-wide option, that file is compiled separately. For example, if every C and C++ file in your
project has a different set of file-specific options, each is compiled separately, even though program-level
optimization has been specified. To compile all C and C++ files together, make sure the files do not have
file-specific options. Be aware that compiling C and C++ files together may not be safe if previously you
used a file-specific option.

Compiling Files With the --program_level_compile and --keep_asm Options

NOTE: If you compile all files with the --program_level_compile and --keep_asm options, the
compiler produces only one .asm file, not one for each corresponding source file.

Controlling Program-Level Optimization (--call_assumptions Option)

You can control program-level optimization, which you invoke with --program_level _compile --opt_level=3,
by using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in
other modules can call a module's external functions or modify a module's external variables. The number
following --call_assumptions indicates the level you set for the module that you are allowing to be called or
modified. The --opt_level=3 option combines this information with its own file-level analysis to decide
whether to treat this module's external function and variable declarations as if they had been declared
static. Use Table 3-4 to select the appropriate level to append to the --call_assumptions option.

Table 3-4. Selecting a Level for the --call_assumptions Option

If Your Module ... Use this Option

Has functions that are called from other modules and global variables that are modified in other --call_assumptions=0
modules

Does not have functions that are called by other modules but has global variables that are modified in --call_assumptions=1
other modules

Does not have functions that are called by other modules or global variables that are modified in other --call_assumptions=2
modules

Has functions that are called from other modules but does not have global variables that are modified --call_assumptions=3
in other modules

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you
specified, or it might disable program-level optimization altogether. Table 3-5 lists the combinations of
--call_assumptions levels and conditions that cause the compiler to revert to other --call_assumptions
levels.

SPRU187T-July 2011 Optimizing Your Code 77
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options) www.ti.com

3.7.2

Table 3-5. Special Considerations When Using the --call_assumptions Option

Then the --call_assumptions

If Your Option is... Under these Conditions... Level...

Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2

Not specified The compiler sees calls to outside functions under the Reverts to --call_assumptions=0
--opt_level=3 optimization level

Not specified Main is not defined Reverts to --call_assumptions=0

--call_assumptions=1 or No function has main defined as an entry point and functions are Reverts to --call_assumptions=0

--call_assumptions=2 not identified by the FUNC_EXT_CALLED pragma

--call_assumptions=1 or No interrupt function is defined Reverts to --call_assumptions=0

--call_assumptions=2

--call_assumptions=1 or Functions are identified by the FUNC_EXT_CALLED pragma Remains --call_assumptions=1

--call_assumptions=2 or --call_assumptions=2

--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level_compile and --opt_level=3, you must use a
--call_assumptions option or the FUNC_EXT_CALLED pragma. See Section 3.7.2 for information about
these situations.

Optimization Considerations When Mixing C/C++ and Assembly

If you have any assembly functions in your program, you need to exercise caution when using the
--program_level_compile option. The compiler recognizes only the C/C++ source code and not any
assembly code that might be present. Because the compiler does not recognize the assembly code calls
and variable modifications to C/C++ functions, the --program_level _compile option optimizes out those
C/C++ functions. To keep these functions, place the FUNC_EXT_CALLED pragma (see Section 6.9.10)
before any declaration or reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your program is to use the
--call_assumptions=n option with the --program_level _compile and --opt_level=3 options (see
Section 3.7.1).

In general, you achieve the best results through judicious use of the FUNC_EXT_CALLED pragma in
combination with --program_level_compile --opt_level=3 and --call_assumptions=1 or
--call_assumptions=2.

If any of the following situations apply to your application, use the suggested solution:

Situation — Your application consists of C/C++ source code that calls assembly functions. Those
assembly functions do not call any C/C++ functions or modify any C/C++ variables.

Solution — Compile with --program_level _compile --opt_level=3 --call_assumptions=2 to tell the compiler
that outside functions do not call C/C++ functions or modify C/C++ variables. See Section 3.7.1 for
information about the --call_assumptions=2 option.

If you compile with the --program_level_compile --opt_level=3 options only, the compiler reverts
from the default optimization level (--call_assumptions=2) to --call_assumptions=0. The compiler
uses --call_assumptions=0, because it presumes that the calls to the assembly language functions
that have a definition in C/C++ may call other C/C++ functions or modify C/C++ variables.

Situation — Your application consists of C/C++ source code that calls assembly functions. The assembly
language functions do not call C/C++ functions, but they modify C/C++ variables.

Solution — Try both of these solutions and choose the one that works best with your code:
+ Compile with --program_level_compile --opt_level=3 --call_assumptions=1.

* Add the volatile keyword to those variables that may be modified by the assembly functions and
compile with --program_level_compile --opt_level=3 --call_assumptions=2.

See Section 3.7.1 for information about the --call_assumptions=n option.

78

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Using Feedback Directed Optimization

3.8

3.8.1

3.8.1.

3.8.1.

Situation — Your application consists of C/C++ source code and assembly source code. The assembly
functions are interrupt service routines that call C/C++ functions; the C/C++ functions that the
assembly functions call are never called from C/C++. These C/C++ functions act like main: they
function as entry points into C/C++.

Solution — Add the volatile keyword to the C/C++ variables that may be modified by the interrupts. Then,
you can optimize your code in one of these ways:

* You achieve the best optimization by applying the FUNC_EXT_CALLED pragma to all of the
entry-point functions called from the assembly language interrupts, and then compiling with
--program_level_compile --opt_level=3 --call_assumptions=2. Be sure that you use the pragma
with all of the entry-point functions. If you do not, the compiler might remove the entry-point
functions that are not preceded by the FUNC_EXT_CALLED pragma.

» Compile with --program_level _compile --opt_level=3 --call_assumptions=3. Because you do not
use the FUNC_EXT_CALLED pragma, you must use the --call_assumptions=3 option, which is
less aggressive than the --call_assumptions=2 option, and your optimization may not be as
effective.

Keep in mind that if you use --program_level_compile --opt_level=3 without additional options, the
compiler removes the C functions that the assembly functions call. Use the FUNC_EXT_CALLED
pragma to keep these functions.

Using Feedback Directed Optimization

Feedback directed optimization provides a method for finding frequently executed paths in an application
using compiler-based instrumentation. This information is fed back to the compiler and is used to perform
optimizations. This information is also used to provide you with information about application behavior.

Feedback Directed Optimization

Feedback directed optimization uses run-time feedback to identify and optimize frequently executed
program paths. Feedback directed optimization is a two-phase process.

1 Phase 1: Collect Program Profile Information

In this phase the compiler is invoked with the option --gen_profile_info, which instructs the compiler to add
instrumentation code to collect profile information. The compiler inserts a minimal amount of
instrumentation code to determine control flow frequencies. Memory is allocated to store counter
information.

The instrumented application program is executed on the target using representative input data sets. The
input data sets should correlate closely with the way the program is expected to be used in the end
product environment. When the program completes, a run-time-support function writes the collected
information into a profile data file called a PDAT file. Multiple executions of the program using different
input data sets can be performed and in such cases, the run-time-support function appends the collected
information into the PDAT file. The resulting PDAT file is post-processed using a tool called the Profile
Data Decoder or pdd6x. The pdd6x tool consolidates multiple data sets and formats the data into a
feedback file (PRF file, see Section 3.8.2) for consumption by phase 2 of feedback directed optimization.

2 Phase 2: Use Application Profile Information for Optimization

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which reads the specified
PRF file generated in phase 1. In phase 2, optimization decisions are made using the data generated
during phase 1. The profile feedback file is used to guide program optimization. The compiler optimizes
frequently executed program paths more aggressively.

The compiler uses data in the profile feedback file to guide certain optimizations of frequently executed
program paths.

SPRU187T-July 2011 Optimizing Your Code 79
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Using Feedback Directed Optimization www.ti.com

3.8.1.3 Generating and Using Profile Information

There are two options that control feedback directed optimization:

--gen_profile_info tells the compiler to add instrumentation code to collect profile information. When

the program executes the run-time-support exit() function, the profile data is
written to a PDAT file. If the environment variable TI_PROFDATA on the host is
set, the data is written into the specified file name. Otherwise, it uses the default
filename: pprofout.pdat. The full pathname of the PDAT file (including the directory
name) can be specified using the TI_PROFDATA host environment variable.

By default, the RTS profile data output routine uses the C 1/0O mechanism to write
data to the PDAT file. You can install a device handler for the PPHNDL device that
enables you to re-direct the profile data to a custom device driver routine.

Feedback directed optimization requires you to turn on at least skeletal debug
information when using the --gen_profile_info option. This enables the compiler to
output debug information that allows pdd6x to correlate compiled functions and
their associated profile data.

--use_profile_info specifies the profile information file(s) to use for performing phase 2 of feedback

directed optimization. More than one profile information file can be specified on the
command line; the compiler uses all input data from multiple information files. The
syntax for the option is:

--use_profile_info==filel], file2, ..., filen]

If no filename is specified, the compiler looks for a file named pprofout.prf in the
directory where the compiler in invoked.

3.8.1.4 Example Use of Feedback Directed Optimization

These steps illustrate the creation and use of feedback directed optimization.
. Generate profile information. (Skeletal debug is on by default.)

cl 6x -mv6400+ --opt_level =2 --gen_profile_info foo.c --run_linker --output_file=foo.out
--library=lnk.cnmd --library=rts64plus.lib

. Execute the application.

The execution of the application creates a PDAT file named pprofout.pdat in the current (host)
directory. The application can be run on a simulator or on target hardware connected to a host
machine.

. Process the profile data.

After running the application with multiple data-sets, run pdd6x on the PDAT files to create a profile
information (PRF) file to be used with --use_profile_info.

ppd6éx -e foo.out -o pprofout.prf pprofout.pdat

. Re-compile using the profile feedback file. Skeletal debug is not required.

cl 6x -m/6400+ --opt_level =2 --use_profile_info=pprofout.prf foo.c --run_linker
--output_file=foo.out --library=Ink.cnd --library=rts64plus.lib

3.8.1.5 The .ppdata Section

The profile information collected in phase 1 is stored in the .ppdata section, which must be allocated into
target memory. The .ppdata section contains profiler counters for all functions compiled with
--gen_profile_info. The default Ink.cmd file in code generation tools version 6.1 and later has directives to
place the .ppdata section in data memory. If the link command file has no section directive for allocating
.ppdata section, the link step places the .ppdata section in a writable memory range.

The .ppdata section must be allocated memory in multiples of 32 bytes. Please refer to the linker
command file in the distribution for example usage.

80

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using Feedback Directed Optimization

3.8.1.6 Feedback Directed Optimization and Code Size Tune

Feedback directed optimization is different from the Code Size Tune feature in Code Composer Studio
(CCS). The code size tune feature uses CCS profiling to select specific compilation options for each
function in order to minimize code size while still maintaining a specific performance point. Code size tune
is coarse-grained, since it is selecting an option set for the whole function. Feedback directed optimization
selects different optimization goals along specific regions within a function.

3.8.1.7 Instrumented Program Execution Overhead

During profile collection, the execution time of the application may increase. The amount of increase
depends on the size of the application and the number of files in the application compiled for profiling.

The profiling counters increase the code and data size of the application. Consider using the
--opt_for_space (-ms) code size options when using profiling to mitigate the code size increase. This has
no effect on the accuracy of the profile data being collected. Since profiling only counts execution
frequency and not cycle counts, code size optimization flags do not affect profiler measurements.

3.8.1.8 Invalid Profile Data

When recompiling with --use_profile_info, the profile information is invalid in the following cases:

» The source file name changed between the generation of profile information (gen-profile) and the use
of the profile information (use-profile).

* The source code was modified since gen-profile. In this case, profile information is invalid for the
modified functions.

« Certain compiler options used with gen-profile are different from those with used with use-profile. In
particular, options that affect parser behavior could invalidate profile data during use-profile. In general,
using different optimization options during use-profile should not affect the validity of profile data.

3.8.2 Profile Data Decoder

The code generation tools include a new tool called the profile data decoder or pdd6x, which is used for
post processing profile data (PDAT) files. The pdd6x tool generates a profile feedback (PRF) file. See
Section 3.8.1 for a discussion on where pdd6x fits in the profiling flow. The pdd6x tool is invoked with this
syntax:

pdd6x -e exec.out -0 application.prf flename .pdat

-a Computes the average of the data values in the data sets instead of
accumulating data values

-e exec.out Specifies exec.out is the name of the application executable.

-0 application.prf Specifies application.prf is the formatted profile feedback file that is used as the

argument to --use_profile_info during recompilation. If no output file is specified,
the default output filename is pprofout.prf.
filename .pdat Is the name of the profile data file generated by the run-time-support function.

This is the default name and it can be overridden by using the host environment
variable TI_PROFDATA.

SPRU187T-July 2011 Optimizing Your Code 81

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Using Feedback Directed Optimization

13 TEXAS
INSTRUMENTS

www.ti.com

The run-time-support function and pdd6x append to their respective output files and do not overwrite
them. This enables collection of data sets from multiple runs of the application.

Profile Data Decoder Requirements

NOTE: Your application must be compiled with at least skeletal (dwarf) debug support to enable
feedback directed optimization. When compiling for feedback directed optimization, the
pdd6x tool relies on basic debug information about each function in generating the formatted

.prf file.

The pprofout.pdat file generated by the run-time support is a raw data file of a fixed format
understood only by pdd6x. You should not modify this file in any way.

3.8.3 Feedback Directed Optimization API

There are two user interfaces to the profiler mechanism. You can start and stop profiling in your
application by using the following run-time-support calls.
» TI_start_pprof_collection()

This interface informs the run-time support that you wish to start profiling collection from this point on
and causes the run-time support to clear all profiling counters in the application (that is, discard old

counter values).

» TI_stop_pprof_collection()

This interface directs the run-time support to stop profiling collection and output profiling data into the
output file (into the default file or one specified by the TI_ PROFDATA host environment variable). The
run-time support also disables any further output of profile data into the output file during exit(), unless
you call TI_start_pprof_collection() again.

3.8.4 Feedback Directed Optimization Summary

Options
--gen_profile_info
--use_profile_info=file.prf
--analyze=codecov

--analyze_only

Adds instrumentation to the compiled code. Execution of the code results in
profile data being emitted to a PDAT file.

Uses profile information for optimization and/or generating code coverage
information.

Generates a code coverage information file and continues with profile-based
compilation. Must be used with --use_profile_info.

Generates only a code coverage information file. Must be used with
--use_profile_info. You must specify both --analyze=codecov and
--analyze_only to do code coverage analysis of the instrumented
application.

Host Environment Variables

TI_PROFDATA
TI_COVDIR
TI_COVDATA

API

Tl _start_pprof_collection()
T1_stop_pprof_collection()
PPHDNL

Writes profile data into the specified file
Creates code coverage files in the specified directory
Writes code coverage data into the specified file

Clears the profile counters to file
Writes out all profile counters to file

Device driver handle for low-level C I/O based driver for writing out profile
data from a target program.

82

Optimizing Your Code

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS
INSTRUMENTS

www.ti.com Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage

3.9

3.9.1

Files Created

* pdat Profile data file, which is created by executing an instrumented program and
used as input to the profile data decoder
*.prf Profiling feedback file, which is created by the profile data decoder and

used as input to the re-compilation step

Using Profile Information to Get Better Program Cache Layout and Analyze Code
Coverage

There are two different types of analysis information you can get from the path profiler: code coverage
information and call graph information.

The program cache layout tool helps you to develop better program instruction cache efficiency into your
applications. Program cache layout is the process of controlling the relative placement of code sections
into memory to minimize the occurrence of conflict misses in the program instruction cache.

Background and Motivation

Effective utilization of the program instruction cache is an important part of getting the best performance
from a C6000. The dedicated program instruction cache (L1P) provides fast instruction fetches, but a
cache miss can be very costly. Some applications (e.g. h264) can spend 30%+ of the processor's time
stalling due to L1P cache misses. A cache miss occurs when a fetch fails to read an instruction from L1P
and the process is required to access the instruction from the next level of memory. A request to L2 or
external memory has a much higher latency than an access from L1P.

Careful placement of code sections can greatly reduce the number of cache misses. The C6000 L1P is
especially sensitive to code placement because it is direct-mapped.

Many L1P cache misses are conflict misses. Conflict misses occur when the cache has recently evicted a
block of code that is now needed again. In a program instruction cache this often occurs when two
frequently executed blocks of code (usually from different functions) interleave their execution and are
mapped to the same cache line.

For example, suppose there is a call to function B from inside a loop in function A. Suppose also that the
code for function A's loop is mapped to the same cache line as a block of code from function B that is
executed every time that B is called. Each time B is called from within this loop, the loop code in function
A is evicted from the cache by the code in B that is mapped to the same cache line. Even worse, when B
returns to A, the loop code in A evicts the code from function B that is mapped to the same cache line.

Every iteration through the loop will cause two program instruction cache conflict misses. If the loop is
heavily traversed, then the number of processor cycles lost to program instruction cache stalls can
become quite large.

Many program instruction cache conflict misses can be avoided with more intelligent placement of
functions that are active at the same time. Program instruction cache efficiency can be significantly
improved using code placement strategies that utilize dynamic profile information that is gathered during
the run of an instrumented application.

The program cache layout tool (clt6x) takes dynamic profile information in the form of a weighted call
graph and creates a preferred function order command file that can be used as input to the linker to guide
the placement of function subsections.

You can use the program cache layout tool to help improve your program locality and reduce the number
of L1P cache conflict misses that occur during the run of your application, thereby improving your
application's performance.

SPRU187T—-July 2011 Optimizing Your Code 83
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage www.ti.com

3.9.2 Code Coverage

The information collected during feedback directed optimization can be used for generating code coverage
reports. As with feedback directed optimization, the program must be compiled with the --gen_profile_info
option.

Code coverage conveys the execution count of each line of source code in the file being compiled, using
data collected during profiling.

3.9.2.1 Phasel: Collect Program Profile Information

In this phase the compiler is invoked with the option --gen_profile_info, which instructs the compiler to add
instrumentation code to collect profile information. The compiler inserts a minimal amount of
instrumentation code to determine control flow frequencies. Memory is allocated to store counter
information.

The instrumented application program is executed on the target using representative input data sets. The
input data sets should correlate closely with the way the program is expected to be used in the end
product environment. When the program completes, a run-time-support function writes the collected
information into a profile data file called a PDAT file. Multiple executions of the program using different
input data sets can be performed and in such cases, the run-time-support function appends the collected
information into the PDAT file. The resulting PDAT file is post-processed using a tool called the Profile
Data Decoder or pdd6x. The pdd6x tool consolidates multiple data sets and formats the data into a
feedback file (PRF file, see Section 3.8.2) for consumption by phase 2 of feedback directed optimization.

3.9.2.2 Phase 2: Generate Code Coverage Reports

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which indicates that the
compiler should read the specified PRF file generated in phase 1. The application must also be compiled
with either the --codecov or --onlycodecov option; the compiler generates a code-coverage info file. The
--codecov option directs the compiler to continue compilation after generating code-coverage information,
while the --onlycodecov option stops the compiler after generating code-coverage data. For example:

cl 6x --opt_level =2 --use_profile_info=pprofout.prf --onlycodecov foo.c
You can specify two environment variables to control the destination of the code-coverage information file.

* The TI_COVDIR environment variable specifies the directory where the code-coverage file should be
generated. The default is the directory where the compiler is invoked.

+ The TI_COVDATA environment variable specifies the name of the code-coverage data file generated
by the compiler. the default is filename.csv where filename is the base-name of the file being compiled.
For example, if foo.c is being compiled, the default code-coverage data file name is foo.csv.

If the code-coverage data file already exists, the compiler appends the new dataset at the end of the file.

Code-coverage data is a comma-separated list of data items that can be conveniently handled by
data-processing tools and scripting languages. The following is the format of code-coverage data:

"filename-with-full-path”,"funcname", line#,column#,exec-frequency,"comments"

"filename-with-full-path” Full pathname of the file corresponding to the entry

"funcname” Name of the function

line# Line number of the source line corresponding to frequency data

column# Column number of the source line

exec-frequency Execution frequency of the line

"comments" Intermediate-level representation of the source-code generated by the parser

The full filename, function name, and comments appear within quotation marks ("). For example:
"/some_dir/zlibl/c64p/deflate.c"," _deflatelnit2_",216,5,1,"(strm>zalloc)"

Other tools, such as a spreadsheet program, can be used to format and view the code coverage data.

84

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage

3.9.3 What Performance Improvements Can You Expect to See?

If your application does not suffer from inefficient usage of the L1P cache, then the program cache layout
capability will not have any effect on the performance of your application. Before applying the program
cache layout tooling to your application, analyze the L1P cache performance in your application.

3.9.3.1 Evaluating L1P Cache Performance

Evaluating the L1P cache usage efficiency of your application will not only help you determine whether or
not your application might benefit from using program cache layout, but it also gives you a rough estimate
as to how much performance improvement you can reasonably expect from applying program cache
layout.

There are several resources available to help you evaluate L1P cache usage in your application. One way
of doing this is to use the Function Profiling capability in Code Composer Studio (CCS). This capability is
available in the C6400+ Megamodule Cycle Accurate Simulator target configuration under CCS. You can
find further information about using the CCS Function Profiling capabilities at
http://tiexpressdsp.com/index.php/Profiler. You can find more information about how to use this capability
in conjunction with the program cache layout tool at

http://tiexpressdsp.com/index.php/Program Cache Layout.

The number of CPU stall cycles that occur due to L1P cache misses gives you a reasonable upper bound
estimate of the number of CPU cycles that you may be able to recover with the use of the program cache
layout tooling in your application. Please be aware that the performance impact due to program cache
layout will tend to vary for the different data sets that are run through your application.

3.9.4 Program Cache Layout Related Features and Capabilities

Version 7.0 of the C6000 code generation tools introduce some features and capabilities that can be used
in conjunction with the program cache layout tool, cltéx. The following is a summary:

3.9.4.1 Path Profiler

The C6000 tools include a path profiling utility, pprof6x, that is run from the compiler, cléx. The pproféx
utility is invoked by the compiler when the --gen_profile or the --use_profile command is used from the
compiler command line:

cléx --gen_profile ... file.c
cléx --use_profile ... file.c

For further information about profile-based optimization and a more detailed description of the profiling
infrastructure within the C6000, see Section 3.8.

3.9.4.2 Analysis Options

The path profiling utility, pprof6x, appends code coverage or weighted call graph analysis information to
existing CSV (comma separated values) files that contain the same type of analysis information.

The utility checks to make sure that an existing CSV file contains analysis information that is consistent
with the type of analysis information it is being asked to generate (whether it be code coverage or
weighted call graph analysis). Attempts to mix code coverage and weighted call graph analysis information
in the same output CSV file will be detected and pprof6éx will emit a fatal error and abort.

--analyze=callgraph Instructs the compiler to generate weighted call graph analysis information.
--analyze=codecov Instructs the compiler to generate code coverage analysis information. This
option replaces the previous --codecov option.
--analyze_only Halts compilation after generation of analysis information is completed.
SPRU187T—-July 2011 Optimizing Your Code 85

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://tiexpressdsp.com/index.php/Profiler
http://tiexpressdsp.com/index.php/Program_Cache_Layout
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage www.ti.com

3.9.4.3 Environment Variables

To assist with the management of output CSV analysis files, pproféx supports two new environment
variables:

TI_WCGDATA Allows you to specify a single output CSV file for all weighted call graph analysis
information. New information is appended to the CSV file identified by this
environment variable, if the file already exists.

TI_ANALYSIS_DIR Specifies the directory in which the output analysis file will be generated. The
same environment variable can be used for both code coverage information and
weighted call graph information (all analysis files generated by pprof6x will be
written to the directory specified by the TI_ANALYSIS_DIR environment variable).

TI_COVDIR Environment Variable

NOTE: The existing TI_COVDIR environment variable is still supported when generating code
coverage analysis, but is overridden in the presence of a defined TI_ANALYSIS_DIR
environment variable.

3.9.4.4 Program Cache Layout Tool, cltéx

The program cache layout tool creates a preferred function order command file from input weighted call
graph (WCG) information. The syntax is:

‘clt6x CSV files with WCG info -o forder.cmd

3.9.45 Linker

The compiler prioritizes the placement of a function relative to others based on the order in which
--preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

3.9.4.6 Linker Command File Operator unordered()

The new linker command file keyword unordered relaxes placement constraints placed on an output
section whose specification includes an explicit list of which input sections are contained in the output
section. The syntax is:

unordered()

3.9.5 Program Instruction Cache Layout Development Flow

Once you have determined that your application is experiencing some inefficiencies in its usage of the
program instruction cache, you may decide to include the program cache layout tooling in your
development to attempt to recover some of the CPU cycles that are being lost to stalls due to program
instruction cache conflict misses.

3.9.5.1 Gather Dynamic Profile Information

The program cache layout tool, cltéx, relies on the availability of dynamic profile information in the form of
a weighted call graph in order to produce a preferred function order command file that can be used to
guide function placement at link-time when your application is re-built.

86 Optimizing Your Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage

There are several ways in which this dynamic profile information can be collected. For example, if you are
running your application on hardware, you may have the capability to collect a PC discontinuity trace. The
discontinuity trace can then be post-processed to construct weighted call graph input information for the
cltéx.

The method for collecting dynamic profile information that is presented here relies on the path profiling
capabilities in the C6000 code generation tools. Here is how it works:
1. Build an instrumented application using the --gen_profile_info option.

Using --gen_profile_info instructs the compiler to embed counters into the code along the execution
paths of each function.

To compile only use:

‘cl6x options --gen_profile_info src_file(s) ‘

The compile and link use:

’cl6x options --gen_profile_info src_file(s) -run_linker --library Ink.cmd ‘

2. Run an instrumented application to generate a .pdat file.

When the application runs, the counters embedded into the application by --gen_profile_info keep track
of how many times a particular execution path through a function is traversed. The data collected in
these counters is written out to a profile data file named pprofout.pdat.

The profile data file is automatically generated. For example, if you are using the C64+ simulator under
CCS, you can load and run your instrumented program, and you will see that a new pprofout.pdat file
is created in your working directory (where the instrumented application is loaded from).

3. Decode the profile data file.
Once you have a profile data file, the file is decoded by the profile data decoder tool, pdd6x, as follows:

pdd6x -e=instrumented app out file -o=pprofout.prf pprofout.pdat

Using pdd6x produces a .prf file which is then fed into the re-compile of the application that uses the
profile information to generate weighted call graph input data.

4. Use decoded profile information to generate weighted call graph input.

The compiler now supports a new option, --analyze, which is used to tell the compiler to generate
weighted call graph or code coverage analysis information. Its syntax are as follows:

--analyze=callgraph Instructs the compiler to generate weighted call graph information.

--analyze=codecov Instructs the compiler to generate code coverage information. This option
replaces the previous --codecov option.

The compiler also supports a new --analyze_only option which instructs the compiler to halt
compilation after the generation of analysis information has been completed. This option replaces the
previous --onlycodecov option.

To make use of the dynamic profile information that you gathered, re-compile the source code for your
application using the --analyze=callgraph option in combination with the --use_profile_info option:

cl6x options -mo --analyze=callgraph --use_profile_info=pprofout.prf src_file(s)

The use of -mo instructs the compiler to generate code for each function into its own subsection. This
option provides the linker with the means to directly control the placement of the code for a given
function.

SPRU187T-July 2011 Optimizing Your Code 87

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage www.ti.com

The compiler generates a CSV file containing weighted call graph information for each source file that
is specified on the command line. If such a CSV file already exists, then new call graph analysis
information will be appended to the existing CSV file. These CSV files are then input to the cache
layout tool (clt6x) to produce a preferred function order command file for your application.

For more details on the content of the CSV files (containing weighted call graph information) generated
by the compiler, see Section 3.9.6.

3.9.5.2 Generate Preferred Function Order from Dynamic Profile Information

At this point, the compiler has generated a CSV file for each C/C++ source file specified on the command
line of the re-compile of the application. Each CSV file contains weighted call graph information about all
of the call sites in each function defined in the C/C++ source file.

The program cache layout tool, cltéx, collects all of the weighted call graph information in these CSV files
into a single, merged weighted call graph. The weighted call graph is processed to produce a preferred
function order command file that is fed into the linker to guide the placement of the functions defined in
your application source files. This is the syntax for clt6x:

clt6x *.csv -o forder.cmd

The output of cltéx is a text file containing a sequence of --preferred_order=function specification options.
By default, the name of the output file is forder.cmd, but you can specify your own file name with the -o
option. The order in which functions appear in this file is their preferred function order as determined by
the cltéx.

In general, the proximity of one function to another in the preferred function order list is a reflection of how
often the two functions call each other. If two functions are very close to each other in the list, then the
linker interprets this as a suggestion that the two functions should be placed very near to one another.
Functions that are placed close together are less likely to create a cache conflict miss at run time when
both functions are active at the same time. The overall effect should be an improvement in program
instruction cache efficiency and performance.

3.9.5.3 Utilize Preferred Function Order in Re-Build of Application

Finally, the preferred function order command file that is produced by the clt6x is fed into the linker during
the re-build of the application, as follows:

cl6x options --run_linker *.0bj forder.cmd -link.cmd

The preferred function order command file, forder.cmd, contains a list of --preferred_order=function
specification options. The linker prioritizes the placement of functions relative to each other in the order
that the --preferred_order options are encountered during the linker invocation.

Each --preferred_order option contains a function specification. A function specification can describe
simply the name of the function for a global function, or it can provide the path name and source file name
where the function is defined. A function specification that contains path and file name information is used
to distinguish one static function from another that has the same function name.

The --preferred_order options are interpreted by the linker as suggestions to guide the placement of
functions relative to each other. They are not explicit placement instructions. If an object file or input
section is explicitly mentioned in a linker command file SECTIONS directive, then the placement
instruction specified in the linker command file takes precedence over any suggestion from a
--preferred_order option that is associated with a function that is defined in that object file or input section.

This precedence can be relaxed by applying the unordered() operator to an output specification as
described in Section 3.9.7.

88

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
www.ti.com Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage
3.9.6 Comma-Separated Values (CSV) Files with Weighted Call Graph (WCG) Information

The format of the CSV files generated by the compiler under the --analyze=callgraph --use_profile_info
option combination is as follows:

"caller","callee","weight" [CR][LF]

caller spec,callee spec,call frequency [CR][LF]
caller spec,callee spec,call frequency [CR][LF]
caller spec,callee spec,call frequency [CR][LF]

Keep the following points in mind:

+ Line 1 of the CSV file is the header line. It specifies the meaning of each field in each line of the
remainder of the CSV file. In the case of CSV files that contain weighted call graph information, each
line will have a caller function specification, followed by a callee function specification, followed by an
unsigned integer that provides the number of times a call was executed during run time.

* There may be instances where the caller and callee function specifications are identical on multiple
lines in the CSV file. This will happen when a caller function has multiple call sites to the callee
function. In the merged weighted call graph that is created by the clt6x, the weights of each line that
has the same caller and callee function specifications will be added together.

+ The CSV file that is generated by the compiler using the path profiling instrumentation will not include
information about indirect function calls or calls to runtime support helper functions (like _remi or _divi).
However, you may be able to gather information about such calls with another method (like the PC
discontinuity trace mentioned earlier).

* The format of these CSV files is in compliance with the RFC-4180 specification of Comma-Separated
Values (CSV) files. For more details on this specification, please see http://tools.ietf.org/html/rfc4180.

3.9.7 Linker Command File Operator - unordered()
A new unordered() operator is now available for use in a linker command file. The effect of this operator is
to relax the placement constraints placed on an output section specification in which the content of the
output section is explicitly stated.
Consider an example output section specification:
SECTI ONS
{
text:
{
file.obj(.text:func_a)
file.obj(.text:func_b)
file.obj(.text:func_c)
file.obj(.text:func_d)
file.obj(.text:func_e)
file.obj(.text:func_f)
file.obj(.text:func_g)
file.obj(.text:func_h)
*(.text)
} > PMEM
}
In this SECTIONS directive, the specification of .text explicitly dictates the order in which functions are laid
out in the output section. Thus by default, the linker will layout func_a through func_h in exactly the order
that they are specified, regardless of any other placement priority criteria (such as a preferred function
order list that is enumerated by --preferred_order options).
The unordered() operator can be used to relax this constraint on the placement of the functions in the
"text' output section so that placement can be guided by other placement priority criteria.
The unordered() operator can be applied to an output section as in Example 3-2.
SPRU187T—-July 2011 Optimizing Your Code 89

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://tools.ietf.org/html/rfc4180
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3-2. Output Section for unordered() Operator

SECTI ONS

{

Ltext:

{

unor der ed()

file.obj(.text:func_a)
file.obj(.text:func_b)
file.obj(.text:func_c)
file.obj(.text:func_d)
file.obj(.text:func_e)
file.obj(.text:func_f)
file.obj(.text:func_g)
file.obj(.text:func_h)

*(.text)
} > PMEM

So that, given this list of --preferred_order options:

--preferred_order="func_g"
--preferred_order="func_b"
--preferred_order="func_d"
--preferred_order="func_a"
--preferred_order="func_c"
--preferred_order="func_f"
--preferred_order="func_h"
--preferred_order="func_e"

The placement of the functions in the .text output section is guided by this preferred function order list.

This placement will be reflected in a linker generated map file, as follows:

Example 3-3. Generated Linker Map File for Example 3-2

SECTI ON ALLOCATI ON VAP

out put

section

page

0

origin
00000020
00000020
00000040
00000060
00000080
000000a0
000000c0
000000e0
00000100

00000120
00000020
00000020
00000020
00000020
00000020
00000020
00000020
00000020

attributes/

i nput sections

file.
file.
file.
file.
file

file

file.
file.

obj
obj
obj
obj

. obj
. obj

obj
obj

NSNS~~~

. text
.text
. text
. text
.text
. text
. text
.text

:func_g:
:func_b:
:func_d:
:func_a
:func_c:
cfunc_f:
:func_h:
:func_e:

3.9.7.1 About Dot (.) Expressions in the Presence of unordered()

func_g)
func_b)
func_d)
func_a)
func_c)
func_f)
func_h)
func_e)

Another aspect of the unordered() operator that should be taken into consideration is that even though the
operator causes the linker to relax constraints imposed by the explicit specification of an output section's
contents, the unordered() operator will still respect the position of a dot (.) expression within such a
specification.

90

Optimizing Your Code

Copyright © 2011, Texas Instruments Incorporated

SPRU187T-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage

Consider the output section specification in Example 3-4.

Example 3-4. Respecting Position of a . Expression

SECTI ONS
{

.text: unordered()

{

file.obj(.text:func_a)
file.obj(.text:func_b)
file.obj(.text:func_c)
file.obj(.text:func_d)

+= 0x100

file.obj(.text:func_e)
file.obj(.text:func_f)
file.obj(.text:func_g)
file.obj(.text:func_h)

*(.text)

} > PMEM

In Example 3-4, a dot (.) expression, ". += 0x100;", separates the explicit specification of two groups of
functions in the output section. In this case, the linker will honor the specified position of the dot (.)
expression with respect to the functions on either side of the expression. That is, the unordered() operator
will allow the preferred function order list to guide the placement of func_a through func_d relative to each
other, but none of those functions will be placed after the hole that is created by the dot (.) expression.
Likewise, the unordered() operator allows the preferred function order list to influence the placement of
func_e through func_h relative to each other, but none of those functions will be placed before the hole
that is created by the dot (.) expression.

3.9.7.2 GROUPs and UNIONs

The unordered() operator can only be applied to an output section. This includes members of a GROUP or
UNION directive.

Example 3-5. Applying unordered() to GROUPs

SECTI ONS
{
GROUP
{
.grpl:
{
file.obj(.grpl:func_a)
file.obj(.grpl:func_b)
file.obj(.grpl:func_c)
file.obj(.grpl:func_d)
} unordered()

.grp2:

{
file.obj(.grp2:func_e)
file.obj(.grp2:func_f)
file.obj(.grp2:func_g)
file.obj(.grp2:func_h)

SPRU187T-July 2011 Optimizing Your Code 91

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage www.ti.com

Example 3-5. Applying unordered() to GROUPs (continued)

text: { *(.text) }

} > PMEM

}

3.9.8

The SECTIONS directive in Example 3-5 applies the unordered() operator to the first member of the
GROUP. The .grp1 output section layout can then be influenced by other placement priority criteria (like
the preferred function order list), whereas the .grp2 output section will be laid out as explicitly specified.

The unordered() operator cannot be applied to an entire GROUP or UNION. Attempts to do so will result
in a linker command file syntax error and the link will be aborted.

Things To Be Aware Of

There are some behavioral characteristics and limitations of the program cache layout development flow
that you should bear in mind:

3

Generation of Path Profiling Data File (.pdat)

When running an application that has been instrumented to collect path-profiling data (using
--gen_profile_info compiler option during build), the application will use functions in the
run-time-support library to write out information to the path profiling data file (pprofout.pdat in above
tutorial). If there is a path profiling data file already in existence when the application starts to run, then
any new path profiling data generated will be appended to the existing file.

To prevent combining path profiling data from separate runs of an application, you need to either
rename the path profiling data file from the previous run of the application or remove it before running
the application again.

Indirect Calls Not Recognized by Path Profiling Mechanisms

When using available path profiling mechanisms to collect weighted call graph information from the
path profiling data, pproféx does not recognize indirect calls. An indirect call site will not be
represented in the CSV output file that is generated by pprof6x.

You can work around this limitation by introducing your own information about indirect call sites into the
relevant CSV file(s). If you take this approach, please be sure to follow the format of the callgraph

analysis CSV file ("caller”, "callee","call frequency").

If you are able to get weighted call graph information from a PC trace into a callgraph analysis CSV,
this limitation will no longer apply (as the PC trace can always identify the callee of an indirect call).

Multiple --preferred_order Options Associated With Single Function

There may be cases in which you might want to input more than one preferred function order
command file to the linker during the link of an application. For example, you may have developed or
received a separate preferred function order command file for one or more of the object libraries that
are used by your application.

In such cases, it is possible that one function may be specified in multiple preferred function order
command files. If this happens, the linker will honor only the first instance of the --preferred_order
option in which the function is specified.

92

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS
www.ti.com Indicating Whether Certain Aliasing Techniques Are Used
3.10 Indicating Whether Certain Aliasing Techniques Are Used

Aliasing occurs when you can access a single object in more than one way, such as when two pointers
point to the same object or when a pointer points to a named object. Aliasing can disrupt optimization,
because any indirect reference can refer to another object. The compiler analyzes the code to determine
where aliasing can and cannot occur, then optimizes as much as possible while preserving the
correctness of the program. The compiler behaves conservatively.

The following sections describe some aliasing techniques that may be used in your code. These
techniques are valid according to the 1ISO C standard and are accepted by the C6000 compiler; however,
they prevent the optimizer from fully optimizing your code.

3.10.1 Use the --aliased_variables Option When Certain Aliases are Used

The compiler, when invoked with optimization, assumes that any variable whose address is passed as an
argument to a function is not subsequently modified by an alias set up in the called function. Examples
include:

* Returning the address from a function
» Assigning the address to a global variable

If you use aliases like this in your code, you must use the --aliased_variables option when you are
optimizing your code. For example, if your code is similar to this, use the --aliased_variables option:
int *glob_ptr;

a()
{

int x =1,

int *p = f(&);

p = 5; / p aliases x */

gl ob_ptr = 10; / glob_ptr aliases x */
h(x);

int *f(int *arg)

glob_ptr = arg;
return arg;

3.10.2 Use the --no_bad_aliases Option to Indicate That These Techniques Are Not Used

The --no_bad_aliases option informs the compiler that it can make certain assumptions about how aliases
are used in your code. These assumptions allow the compiler to improve optimization. The
--no_bad_aliases option also specifies that loop-invariant counter increments and decrements are
non-zero. Loop invariant means the value of an expression does not change within the loop.

+ The --no_bad_aliases option indicates that your code does not use the aliasing technique described in
Section 3.10.1. If your code uses that technique, do not use the --no_bad_aliases option. You must
compile with the --aliased_variables option.

Do not use the --aliased_variables option with the --no_bad_aliases option. If you do, the
--no_bad_aliases option overrides the --aliased_variables option.

* The --no_bad_aliases option indicates that a pointer to a character type does not alias (point to) an
object of another type. That is, the special exception to the general aliasing rule for these types given
in section 3.3 of the ISO specification is ignored. If you have code similar to the following example, do
not use the --no_bad_aliases option:

{
long |;
char *p = (char *) & ;

p[2] = 5;

SPRU187T—-July 2011 Optimizing Your Code 93
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS

Indicating Whether Certain Aliasing Techniques Are Used www.ti.com
}

94 Optimizing Your Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS
INSTRUMENTS

www.ti.com Prevent Reordering of Associative Floating-Point Operations

+ The --no_bad_aliases option indicates that indirect references on two pointers, P and Q, are not
aliases if P and Q are distinct parameters of the same function activated by the same call at run time.
If you have code similar to the following example, do not use the --no_bad_aliases option:
g(int j)
{

int a[20];

f(&, &a) /* Bad */
f(&a+42, &a+tj) /* Also Bad */
}

f(int *ptrl, int *ptr2)
{

}

» The --no_bad_aliases option indicates that each subscript expression in an array reference A[E1]..[En]
evaluates to a nonnegative value that is less than the corresponding declared array bound. Do not use
--no_bad_aliases if you have code similar to the following example:

static int ary[20][20];

int g()

{
return f(5, -4); /* -4 is a negative index */
return f(0, 96); /* 96 exceeds 20 as an index */
return f(4, 16); /* This one is OK */

}

int f(int |, int j)
{

}

In this example, ary[5][-4], ary[0][96], and ary[4][16] access the same memory location. Only the
reference ary[4][16] is acceptable with the --no_bad_aliases option because both of its indices are
within the bounds (0..19).

* The --no_bad_aliases option indicates that loop-invariant counter increments and decrements of loop
counters are non-zero. Loop invariant means a value of an expression does not change within the
loop.

return ary[i][j];

If your code does not contain any of the aliasing techniques described above, you should use the
--no_bad_aliases option to improve the optimization of your code. However, you must use discretion with
the --no_bad_aliases option; unexpected results may occur if these aliasing techniques appear in your
code and the --no_bad_aliases option is used.

3.10.3 Using the --no_bad_aliases Option With the Assembly Optimizer

The --no_bad_aliases option allows the assembly optimizer to assume there are no memory aliases in
your linear assembly; i.e., no memory references ever depend on each other. However, the assembly
optimizer still recognizes any memory dependencies you point out with the .mdep directive. For more

information about the .mdep directive, see and Section 4.6.4 .

3.11 Prevent Reordering of Associative Floating-Point Operations
The compiler freely reorders associative floating-point operations. If you do not wish to have the compiler
reorder associative floating point operations, use the --fp_not_associative option. Specifying the
--fp_not_associative option may decrease performance.

SPRU187T—-July 2011 Optimizing Your Code 95

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Use Caution With asm Statements in Optimized Code www.ti.com

3.12 Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements in optimized code. The
compiler rearranges code segments, uses registers freely, and can completely remove variables or
expressions. Although the compiler never optimizes out an asm statement (except when it is
unreachable), the surrounding environment where the assembly code is inserted can differ significantly
from the original C/C++ source code.

It is usually safe to use asm statements to manipulate hardware controls such as interrupt masks, but asm
statements that attempt to interface with the C/C++ environment or access C/C++ variables can have
unexpected results. After compilation, check the assembly output to make sure your asm statements are
correct and maintain the integrity of the program.

3.13 Automatic Inline Expansion (--auto_inline Option)

When optimizing with the --opt_level=3 option or --opt_level=2 option (aliased as -O3 and -02,
respectively), the compiler automatically inlines small functions. A command-line option,
--auto_inline=size, specifies the size threshold for automatic inlining. This option controls only the inlining
of functions that are not explicitly declared as inline.

When the --auto_inline option is not used, the compiler sets the size limit based on the optimization level
and the optimization goal (performance versus code size). If the -auto_inline size parameter is set to 0,
automatic inline expansion is disabled. If the --auto_inline size parameter is set to a non-zero integer, the
compiler automatically inlines any function smaller than size. (This is a change from previous releases,
which inlined functions for which the product of the function size and the number of calls to it was less
than size. The new scheme is simpler, but will usually lead to more inlining for a given value of size.)

The compiler measures the size of a function in arbitrary units; however the optimizer information file
(created with the --gen_opt_info=1 or --gen_opt_info=2 option) reports the size of each function in the
same units that the --auto_inline option uses. When --auto_inline is used, the compiler does not attempt to
prevent inlining that causes excessive growth in compile time or size; use with care.

When --auto_inline option is not used, the decision to inline a function at a particular call-site is based on
an algorithm that attempts to optimize benefit and cost. The compiler inlines eligible functions at call-sites
until a limit on size or compilation time is reached.

When deciding what to inline, the compiler collects all eligible call-sites in the module being compiled and
sorts them by the estimated benefit over cost. Functions declared static inline are ordered first, then leaf
functions, then all others eligible. Functions that are too big are not included.

Inlining behavior varies, depending on which compile-time options are specified:

* The code size limit is smaller when compiling for code size rather than performance. The --auto_inline
option overrides this size limit.

+ At --opt_level=3, the compiler auto-inlines aggressively if compiling for performance.
* At --opt_level=2, the compiler only automatically inlines small functions.

Some Functions Cannot Be Inlined

NOTE: For a call-site to be considered for inlining, it must be legal to inline the function and inlining
must not be disabled in some way. See the inlining restrictions in Section 2.11.5.

Optimization Level 3 or 2 and Inlining

NOTE: In order to turn on automatic inlining, you must use the --opt_level=3 option or --opt_level=2
option. At --opt_level=2, only small functions are auto-inlined. If you desire the --opt_level=3
or 2 optimizations, but not automatic inlining, use --auto_inline=0 with the --opt_level=3 or 2
option.

96 Optimizing Your Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using the Interlist Feature With Optimization

Inlining and Code Size

NOTE: Expanding functions inline increases code size, especially inlining a function that is called in
a number of places. Function inlining is optimal for functions that are called only from a small
number of places and for small functions. To prevent increases in code size because of
inlining, use the --auto_inline=0 and --no_inlining options. These options, used together,
cause the compiler to inline intrinsics only.

3.14 Using the Interlist Feature With Optimization

You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On
option) with the --optimizer_interlist and --c_src_interlist options.

* The --optimizer_interlist option interlists compiler comments with assembly source statements.

* The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the
original C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does not run as a
separate pass. Instead, the compiler inserts comments into the code, indicating how the compiler has
rearranged and optimized the code. These comments appear in the assembly language file as comments
starting with ;**. The C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing
C/C++ statement boundaries. Optimization makes normal source interlisting impractical, because the
compiler extensively rearranges your program. Therefore, when you use the --optimizer_interlist option,
the compiler writes reconstructed C/C++ statements.

Example 3-6 shows a function that has been compiled with optimization (--opt_level=2) and the
--optimizer_interlist option. The assembly file contains compiler comments interlisted with assembly code.

Impact on Performance and Code Size
NOTE: The --c_src_interlist option can have a negative effect on performance and code size.

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts
its comments and the interlist feature runs before the assembler, merging the original C/C++ source into
the assembly file.

Example 3-7 shows the function from Example 3-6 compiled with the optimization (--opt_level=2) and the
--c_src_interlist and --optimizer_interlist options. The assembly file contains compiler comments and C
source interlisted with assembly code.

Example 3-6. The Function From Example 2-4 Compiled With the -O2 and --optimizer_interlist Options

_mai n:
e printf("Hello, world\n");
T - return O;
STW .D2 B3, *SP--(12)
l'ine 3
B . S1 _printf
NOP 2
MVKL . S1 SL1+0, AO
MVKH . S1 SL1+0, AO
| MVKL . 82 RLO, B3
STW .D2 A0, *+SP(4)
|| MVKH . S2 RLO, B3
RLO: CALL OCCURS
.line 4
ZERO L1 Ad
.line 5
LDW . D2 *++SP(12), B3
NOP 4
B . 82 B3
SPRU187T-July 2011 Optimizing Your Code 97

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Using the Interlist Feature With Optimization www.ti.com

Example 3-6. The Function From Example 2-4 Compiled With the -O2 and --optimizer_interlist Options
(continued)

NOP 5
; BRANCH OCCURS

Example 3-7. The Function From Example 2-4 Compiled with the --opt_level=2, --optimizer_interlist, and
--c_src_interlist Options

_main
R LR L R T R T printf("Hello, world\n");
R e return O,

STW D2 B3, *SP- - (12)

B S1 _printf

NOP 2

MVKL .S1 SL1+0, A0

MVKH . S1 SL1+0, A0
[MVKL . S2 RLO, B3

STW .D2 AQ, *+SP(4)
|| MVKH . S2 RLO, B3
RLO: ; CALL OCCURS

ZERO . L1 Ad

LDW D2 *++SP(12), B3
NOP 4

B . S2 B3

98 Optimizing Your Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Debugging and Profiling Optimized Code

3.15 Debugging and Profiling Optimized Code

Debugging fully optimized code is not recommended, because the compiler's extensive rearrangement of
code and the many-to-many allocation of variables to registers often make it difficult to correlate source
code with object code. Profiling code that has been built with the --symdebug:dwarf (aliased as -g) option
or the --symdebug:coff option (STABS debug) is not recommended either, because these options can
significantly degrade performance. To remedy these problems, you can use the options described in the
following sections to optimize your code in such a way that you can still debug or profile the code.

3.15.1 Debugging Optimized Code (--symdebug:dwarf, --symdebug:coff, and --opt_level
Options)

To debug optimized code, use the --opt_level (aliased as -O) option in conjunction with one of the
symbolic debugging options (--symdebug:dwarf or --symdebug:coff). The symbolic debugging options
generate directives that are used by the C/C++ source-level debugger, but they disable many compiler
optimizations. When you use the --opt_level option (which invokes optimization) with the
--symdebug:dwarf or --symdebug:coff option, you turn on the maximum amount of optimization that is
compatible with debugging.

If you want to use symbolic debugging and still generate fully optimized code, use the
--optimize_with_debug option. This option reenables the optimizations disabled by --symdebug:dwarf or
--symdebug:coff. However, if you use the --optimize_with_debug option, portions of the debugger's
functionality will be unreliable.

If you are having trouble debugging loops in your code, you can use the --disable_software_pipelining
option to turn off software pipelining. See Section 3.2.1 for more information.

Symbolic Debugging Options Affect Performance and Code Size

NOTE: Using the --symdebug:dwarf or --symdebug:coff option can cause a significant performance
and code size degradation of your code. Use these optionsthis option for debugging only.
Using --symdebug:dwarf or --symdebug:coff when profiling is not recommended.

C6400+, C6740, and C6600 Support Only DWARF Debugging

NOTE: Since C6400+, C6740, and C6600 produce only DWARF debug information, the
--symdebug:coff option is not supported when compiling with -mv6400+, -mv6740, or
-mv6600.

3.15.2 Profiling Optimized Code

To profile optimized code, use optimization (--opt_level=0 through --opt_level=3) without any debug option.
By default, the compiler generates a minimal amount of debug information without affecting optimizations,
code size, or performance.

If you have a breakpoint-based profiler, use the --profile:breakpt option with the --opt_level option. The
--profile:breakpt option disables optimizations that would cause incorrect behavior when using a
breakpoint-based profiler.

If you have a power profiler, use the --profile:power option with the --opt_level option. The --profile:power
option produces instrument code for the power profiler.

If you need to profile code at a finer grain that the function level in Code Composer Studio, you can use
the --symdebug:dwarf or --symdebug:coff option, although this is not recommended. You might see a
significant performance degradation because the compiler cannot use all optimizations with
--symdebug:dwarf or --symdebug:coff. It is recommended that outside of Code Composer Studio, you use
the clock() function.

Profile Points

NOTE: In Code Composer Studio, when symbolic debugging is not used, profile points can only be
set at the beginning and end of functions.

SPRU187T—-July 2011 Optimizing Your Code 99

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Controlling Code Size Versus Speed www.ti.com

3.16 Controlling Code Size Versus Speed

The latest mechanism for controlling the goal of optimizations in the compiler is represented by the
--opt_for_speed=num option. The num denotes the level of optimization (0-5), which controls the type and
degree of code size or code speed optimization:

--opt_for_speed=0

Enables optimizations geared towards improving the code size with a high risk of worsening or
impacting performance.

--opt_for_speed=1

Enables optimizations geared towards improving the code size with a medium risk of worsening or
impacting performance.

--opt_for_speed=2

Enables optimizations geared towards improving the code size with a low risk of worsening or
impacting performance.

--opt_for_speed=3

Enables optimizations geared towards improving the code performance/speed with a low risk of
worsening or impacting code size.

--opt_for_speed=4

Enables optimizations geared towards improving the code performance/speed with a medium risk of
worsening or impacting code size.

--opt_for_speed=5

Enables optimizations geared towards improving the code performance/speed with a high risk of
worsening or impacting code size.

If you specify the option without a parameter, the default setting is --opt_for_speed=4. However, the
default behavior of the compiler is as if --opt_for_speed=1 were specified.

The initial mechanism for controlling code space, the --opt_for_space option, has the following
equivalences with the --opt_for_speed option:

--opt_for_space --opt_for_speed
none =4
=0 =3
=1 =2
=2 =1
=3 =0
100 Optimizing Your Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com What Kind of Optimization Is Being Performed?

3.17 What Kind of Optimization Is Being Performed?

The TMS320C6000 C/C++ compiler uses a variety of optimization techniques to improve the execution
speed of your C/C++ programs and to reduce their size.

Following are some of the optimizations performed by the compiler:

Optimization

See

Cost-based register allocation
Alias disambiguation
Branch optimizations and control-flow simplification

Data flow optimizations
» Copy propagation
« Common subexpression elimination
* Redundant assignment elimination

Expression simplification

Inline expansion of functions

Function Symbol Aliasing

Induction variable optimizations and strength reduction
Loop-invariant code motion

Loop rotation

Instruction scheduling

Section 3.17.1
Section 3.17.1
Section 3.17.3
Section 3.17.4

Section 3.17.5
Section 3.17.6
Section 3.17.7
Section 3.17.8
Section 3.17.9
Section 3.17.10
Section 3.17.11

C6000-Specific Optimization See

Register variables Section 3.17.12
Register tracking/targeting Section 3.17.13
Software pipelining Section 3.17.14

3.17.1 Cost-Based Register Allocation

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary
values according to their type, use, and frequency. Variables used within loops are weighted to have
priority over others, and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a
simple counting loop and software pipeline, unroll, or eliminate the loop. Strength reduction turns the array
references into efficient pointer references with autoincrements.

3.17.2 Alias Disambiguation

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine
whether or not two or more | values (lowercase L: symbols, pointer references, or structure references)
refer to the same memory location. This aliasing of memory locations often prevents the compiler from
retaining values in registers because it cannot be sure that the register and memory continue to hold the
same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the
same location, allowing the compiler to freely optimize such expressions.

SPRU187T-July 2011 Optimizing Your Code 101

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

What Kind of Optimization Is Being Performed? www.ti.com

3.17.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of
operations (basic blocks) to remove branches or redundant conditions. Unreachable code is deleted,
branches to branches are bypassed, and conditional branches over unconditional branches are simplified
to a single conditional branch.

When the value of a condition is determined at compile time (through copy propagation or other data flow
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are
reduced to conditional instructions, totally eliminating the need for branches.

3.17.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and
remove unnecessary assignments, and avoid operations that produce values that are already computed.
The compiler with optimization enabled performs these data flow optimizations both locally (within basic
blocks) and globally (across entire functions).

» Copy propagation. Following an assignment to a variable, the compiler replaces references to the
variable with its value. The value can be another variable, a constant, or a common subexpression.
This can result in increased opportunities for constant folding, common subexpression elimination, or
even total elimination of the variable.

+ Common subexpression elimination. When two or more expressions produce the same value, the
compiler computes the value once, saves it, and reuses it.

* Redundant assignment elimination. Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables with no subsequent reference
before another assignment or before the end of the function). The compiler removes these dead
assignments.

3.17.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer
instructions or registers. Operations between constants are folded into single constants. For example, a =
(b+4)-(c+1)becomesa=b-c+3.

3.17.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the overhead associated with a
function call as well as providing increased opportunities to apply other optimizations.

3.17.7 Function Symbol Aliasing

The compiler recognizes a function whose definition contains only a call to another function. If the two

functions have the same signature (same return value and same number of parameters with the same
type, in the same order), then the compiler can make the calling function an alias of the called function.
For example, consider the following:

int bbb(int argl, char *arg2);

int aaa(int n, char *str)

{

}

For this example, the compiler makes aaa an alias of bbb, so that at link time all calls to function aaa
should be redirected to bbb. If the linker can successfully redirect all references to aaa, then the body of
function aaa can be removed and the symbol aaa is defined at the same address as bbb.

return bbb(n, str);

102

Optimizing Your Code SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com What Kind of Optimization Is Being Performed?

3.17.8 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related to the number of executions
of the loop. Array indices and control variables for loops are often induction variables.

Strength reduction is the process of replacing inefficient expressions involving induction variables with
more efficient expressions. For example, code that indexes into a sequence of array elements is replaced
with code that increments a pointer through the array.

Induction variable analysis and strength reduction together often remove all references to your
loop-control variable, allowing its elimination.

3.17.9 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute to the same value. The
computation is moved in front of the loop, and each occurrence of the expression in the loop is replaced
by a reference to the precomputed value.

3.17.10 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an extra branch out of the loop. In
many cases, the initial entry conditional check and the branch are optimized out.

3.17.11 Instruction Scheduling

The compiler performs instruction scheduling, which is the rearranging of machine instructions in such a
way that improves performance while maintaining the semantics of the original order. Instruction
scheduling is used to improve instruction parallelism and hide pipeline latencies. It can also be used to
reduce code size.

3.17.12 Register Variables

The compiler helps maximize the use of registers for storing local variables, parameters, and temporary
values. Accessing variables stored in registers is more efficient than accessing variables in memory.
Register variables are particularly effective for pointers.

3.17.13 Register Tracking/Targeting

The compiler tracks the contents of registers to avoid reloading values if they are used again soon.
Variables, constants, and structure references such as (a.b) are tracked through straight-line code.
Register targeting also computes expressions directly into specific registers when required, as in the case
of assigning to register variables or returning values from functions.

3.17.14 Software Pipelining

Software pipelining is a technique use to schedule from a loop so that multiple iterations of a loop execute
in parallel. See Section 3.2 for more information.

SPRU187T—-July 2011 Optimizing Your Code 103

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

104 Optimizing Your Code SPRU187T—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

. Chapter 4
I3 TEXAS SPRU187T—July 2011

INSTRUMENTS
Using the Assembly Optimizer

The assembly optimizer allows you to write assembly code without being concerned with the pipeline
structure of the C6000 or assigning registers. It accepts linear assembly code, which is assembly code
that may have had register-allocation performed and is unscheduled. The assembly optimizer assigns
registers and uses loop optimizations to turn linear assembly into highly parallel assembly.

Topic Page

4.1 Code Development Flow to Increase PerformancCecocveieieiviiinieiiieieaeaeenennss 106

4.2 About the ASSEMDBIY OPLIMIZELcuiiiiiiii e e e e 107

4.3 What You Need to Know to Write Linear ASSembIlyccooiiiiiiiiiiiiiiiiiiiiieeens 108

4.4 Assembly OptimizZEer DiF€CHIVES .uiuiuiuiiiieiiiiit it ettt et e et aeaeeaens 114

45 Avoiding Memory Bank Conflicts With the Assembly Optimizercccecvviiienenens 129

46 Memory Alias Disambiguationc.cocueeieieiii e 135
SPRU187T-July 2011 Using the Assembly Optimizer 105

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Code Development Flow to Increase Performance www.ti.com

4.1 Code Development Flow to Increase Performance

You can achieve the best performance from your C6000 code if you follow this flow when you are writing
and debugging your code:

Phase 1: Write C/C++ code
Develop C/C++ code v
Compile
v
Profile

Efficient

enough? Complete)

»| Refine C/C++ code

Phase 2: v
Refine C/C++ Compile
code -

Profile

Efficient

enough? Complete)

Yes

More C/C++
optimizations?,

v

Write/refine linear assembly

Phase 3: v
Write linear Assembly optimize
assembly 3

Profile

No

Efficient
enough?

(Complete)

There are three phases of code development for the C6000:

* Phase 1: writein C
You can develop your C/C++ code for phase 1 without any knowledge of the C6000. Use a simulator
after compiling with the --opt_level=3 option without any --debug option to identify any inefficient areas
in your C/C++ code. See Section 3.15 for more information about debugging and profiling optimized
code. To improve the performance of your code, proceed to phase 2.

106 Using the Assembly Optimizer SPRU187T—-July 2011
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com About the Assembly Optimizer

* Phase 2: refine your C/C++ code

In phase 2, use the intrinsics and compiler options that are described in this book to improve your
C/C++ code. Use a simulator to check the performance of your altered code. Refer to the
TMS320C6000 Programmer's Guide for hints on refining C/C++ code. If your code is still not as
efficient as you would like it to be, proceed to phase 3.

* Phase 3: write linear assembly

In this phase, you extract the time-critical areas from your C/C++ code and rewrite the code in linear
assembly. You can use the assembly optimizer to optimize this code. When you are writing your first
pass of linear assembly, you should not be concerned with the pipeline structure or with assigning
registers. Later, when you are refining your linear assembly code, you might want to add more details
to your code, such as partitioning registers.

Improving performance in this stage takes more time than in phase 2, so try to refine your code as
much as possible before using phase 3. Then, you should have smaller sections of code to work on in
this phase.

4.2 About the Assembly Optimizer

If you are not satisfied with the performance of your C/C++ code after you have used all of the C/C++
optimizations that are available, you can use the assembly optimizer to make it easier to write assembly
code for the C6000.

The assembly optimizer performs several tasks including the following:

* Optionally, partitions instructions and/or registers

* Schedules instructions to maximize performance using the instruction-level parallelism of the C6000
» Ensures that the instructions conform to the C6000 latency requirements

* Optionally, allocates registers for your source code

Like the C/C++ compiler, the assembly optimizer performs software pipelining. Software pipelining is a
technique used to schedule instructions from a loop so that multiple iterations of the loop execute in

parallel. The code generation tools attempt to software pipeline your code with inputs from you and with
information that it gathers from your program. For more information, see Section 3.2.

To invoke the assembly optimizer, use the compiler program (cl6x). The assembly optimizer is
automatically invoked by the compiler program if one of your input files has a .sa extension. You can
specify C/C++ source files along with your linear assembly files. For more information about the compiler
program, see Chapter 2.

SPRU187T-July 2011 Using the Assembly Optimizer 107

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

What You Need to Know to Write Linear Assembly

13 TEXAS
INSTRUMENTS

www.ti.com

4.3

What You Need to Know to Write Linear Assembly

By using the C6000 profiling tools, you can identify the time-critical sections of your code that need to be
rewritten as linear assembly. The source code that you write for the assembly optimizer is similar to
assembly source code. However, linear assembly code does not need to be partitioned, scheduled, or
register allocated. The intention is for you to let the assembly optimizer determine this information for you.

When you are writing linear assembly code, you need to know about these items:
* Assembly optimizer directives

Your linear assembly file can be a combination of linear assembly code segments and regular
assembly source. Use the assembly optimizer directives to differentiate the assembly optimizer code
from the regular assembly code and to provide the assembly optimizer with additional information

about your code. The assembly optimizer directives are described in Section 4.4.
* Options that affect what the assembly optimizer does
The compiler options in Table 4-1 affect the behavior of the assembly optimizer.

Table 4-1. Options That Affect the Assembly Optimizer

Option Effect

See

--ap_extension Changes the default extension for assembly optimizer source files
--ap_file Changes how assembly optimizer source files are identified
--disable_software_pipelining Turns off software pipelining

--debug_software_pipeline Generates verbose software pipelining information
--interrupt_threshold=n Specifies an interrupt threshold value

--keep_asm Keeps the assembly language (.asm) file

--no_bad_aliases Presumes no memory aliasing

--opt_for_space=n Controls code size on four levels (n=0, 1, 2, or 3)

--opt_level=n Increases level of optimization (n=0, 1, 2, or 3)

--quiet Suppresses progress messages

--silicon_version=n Select target version

--skip_assembler Compiles or assembly optimizes only (does not assemble)
--speculate_loads=n Allows speculative execution of loads with bounded address ranges

Section 2.3.9
Section 2.3.7
Section 3.2.1
Section 3.2.2
Section 2.12
Section 2.3.1
Section 3.10.3
Section 3.5
Section 3.1
Section 2.3.1
Section 2.3.4
Section 2.3.1
Section 3.2.3

e TMS320C6000 instructions

When you are writing your linear assembly, your code does not need to indicate the following:

— Pipeline latency
— Register usage
— Which unit is being used

As with other code generation tools, you might need to modify your linear assembly code until you are
satisfied with its performance. When you do this, you will probably want to add more detail to your

linear assembly. For example, you might want to partition or assignh some registers.

Do Not Use Scheduled Assembly Code as Source

NOTE: The assembly optimizer assumes that the instructions in the input file are placed in the
logical order in which you would like them to occur (that is, linear assembly code). Parallel

instructions are illegal.

If the compiler cannot make your instructions linear (non-parallel), it produces an error
message. The compiler assumes instructions occur in the order the instructions appear in
the file. Scheduled code is illegal (even non-parallel scheduled code). Scheduled code may
not be detected by the compiler but the resulting output may not be what you intended.

* Linear assembly source statement syntax

The linear assembly source programs consist of source statements that can contain assembly
optimizer directives, assembly language instructions, and comments. See Section 4.3.1 for more

information on the elements of a source statement.

108

Using the Assembly Optimizer

SPRU187T—-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

What You Need to Know to Write Linear Assembly

4.3.1 Li
As

Specifying registers or register sides

Registers can be assigned explicitly to user symbols. Alternatively, symbols can be assigned to the
A-side or B-side leaving the compiler to do the actual register allocation. See Section 4.3.2 for
information on specifying registers.

Specifying the functional unit

The functional unit specifier is optional in linear assembly code. Data path information is respected,;
unit information is ignored.

Source comments

The assembly optimizer attaches the comments on instructions from the input linear assembly to the
output file. It attaches the 2-tuple <x, y> to the comments to specify which iteration and cycle of the
loop an instruction is on in the software pipeline. The zero-based number x represents the iteration the
instruction is on during the first execution of the kernel. The zero-based number y represents the cycle
the instruction is scheduled on within a single iteration of the loop. See Section 4.3.4, for an illustration
of the use of source comments and the resulting assembly optimizer output.

near Assembly Source Statement Format
ource statement can contain five ordered fields (label, mnemonic, unit specifier, operand list, and

comment). The general syntax for source statements is as follows:

label[:] Labels are optional for all assembly language instructions and for most (but not all)

assembly optimizer directives. When used, a label must begin in column 1 of a source
statement. A label can be followed by a colon.

[register] Square brackets ([]) enclose conditional instructions. The machine-instruction

mnemonic is executed based on the value of the register within the brackets; valid
register names are A0 for C6400, C6400+, C6740, and C6600 only; Al, A2, BO, B1,
B2, or symbolic.

mnemonic The mnemonic is a machine-instruction (such as ADDK, MVKH, B) or assembly

un

optimizer directive (such as .proc, .trip)

it specifier The optional unit specifier enables you to specify the functional unit operand. Only the
specified unit side is used; other specifications are ignored. The preferred method is
specifying register sides.

operand list The operand list is not required for all instructions or directives. The operands can be

symbols, constants, or expressions and must be separated by commas.

comment Comments are optional. Comments that begin in column 1 must begin with a

semicolon or an asterisk; comments that begin in any other column must begin with a
semicolon.

The C6000 assembly optimizer reads up to 200 characters per line. Any characters beyond 200 are
truncated. Keep the operational part of your source statements (that is, everything other than comments)
less than 200 characters in length for correct assembly. Your comments can extend beyond the character

limi
Fol

3

t, but the truncated portion is not included in the .asm file.

low these guidelines in writing linear assembly code:
All statements must begin with a label, a blank, an asterisk, or a semicolon.
Labels are optional; if used, they must begin in column 1.

One or more blanks must separate each field. Tab characters are interpreted as blanks. You must
separate the operand list from the preceding field with a blank.

Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or ;) but comments that begin in any other column must begin with a semicolon.

If you set up a conditional instruction, the register must be surrounded by square brackets.
A mnemonic cannot begin in column 1 or it is interpreted as a label.

Refer to the TMS320C6000 Assembly Language Tools User's Guide for information on the syntax of
C6000 instructions, including conditional instructions, labels, and operands.

SPRU187T-July 2011 Using the Assembly Optimizer 109
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

What You Need to Know to Write Linear Assembly www.ti.com

4.3.2

Register Specification for Linear Assembly

There are only two cross paths in the C6000. This limits the C6000 to one source read from each data
path's opposite register file per cycle. The compiler must select a side for each instruction; this is called
partitioning.

It is recommended that you do not initially partition the linear assembly source code by hand. This allows
the compiler more freedom to partition and optimize your code. If the compiler does not find an optimal
partition in a software pipelined loop, then you can partition enough instructions by hand to force optimal
partitioning by partitioning registers.

The assembly optimizer chooses a register for you such that its use agrees with the functional units
chosen for the instructions that operate on the value.

Registers can be directly partitioned through two directives. The .rega directive is used to constrain a
symbolic name to A-side registers. The .regb directive is used to constrain a symbolic name to B-side
registers. See the .rega/.regb topic for further details on these directives. The .reg directive allows you to
use descriptive names for values that are stored in registers. See the .reg topic for further details and
examples of the .reg directive.

Example 4-1 is a hand-coded linear assembly program that computes a dot product; compare to
Example 4-2, which illustrates C code.

Example 4-1. Linear Assembly Code for Computing a Dot Product

_dotp: .cproc a_0, b_0

| oop:

[ent]
[cnt]

.rega a_4, tnmp0, sunD, prodl, prod2

.regb b_4, tmpl, suml, prod3, prod4

.reg cnt, sum

.reg val 0, vall

ADD 4, a_ 0, a_ 4

ADD 4, b_0, b_4

MK 100, cnt

ZERO sunD

ZERO suml

.trip 25

LDW *a_0++[2], valO ; load a[0-1]

LDW *b_0++[2], vall ; load b[0-1]

MPY val 0, vall, prodl ; a[0] * b[0]

MPYH val 0, val 1, prod2 ;oa[1] * b[1]

ADD prodl, prod2, tnpO ; sumD += (a[0]*b[0]) +
ADD tnp0, sunD, sunD ; (a[1]*b[1])
LDW *a_4++[2], valO ; load af2-3]

LDW *b_4++[2], vall ; load b[2-3]

MPY val 0, vall, prod3 ;oal2] * b[2]

MPYH val 0, val 1, prod4 ;o a[3] * b[3]

ADD prod3, prod4, tnpl ;o osunl =+ (a[2]*b[2]) +
ADD tnpl, sunl, sunl ; (a[3]1*b[3])
SuB cnt, 4, cnt ;cnt -= 4

B | oop ; if (cnt!=0) goto |oop

ADD sunD, suml, sum ; conpute final result

.return sum
. endpr oc

Example 4-2 is refined C code for computing a dot product.

110

Using the Assembly Optimizer SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com What You Need to Know to Write Linear Assembly

Example 4-2. C Code for Computing a Dot Product

int dotp(short a[], shortb[])

{
int sunD = O;
int suml = O;
int sum |I;
for (I =0; | <100/4; | +=4)
{
sunD += a[i] * b[i];
sunD += ali+1] * b[i+1];
suml += a[i+2] * b[i+2];
sunl += a[i+3] * [b[i+3];
}
return
}

The old method of partitioning registers indirectly by partitioning instructions can still be used. Side and
functional unit specifiers can still be used on instructions. However, functional unit specifiers (.L/.S/.D/.M)
are ignored. Side specifiers are translated into partitioning constraints on the corresponding symbolic
names, if any. For example:

w .1 X, Yy ; translated to . REGA y
LDW. D2T2 *u, v:w ; translated to .REGB u, v, w

In the linear assembler, you can also specify register pairs using the .cproc and/or .reg directive as in
Example 4-3:

Example 4-3. Specifying a Register Pair

. gl obal foopair
foopair: .cproc gl:qoO, s0O

.reg rl:r0

ADD g1: g0, sO, r1:r0

.return r1:r0

. endproc

In Example 4-3, the expression "g1:g0" means that the first argument into the linear assembly function is a
register pair. By the C calling conventions, the pair "q1:q0" symbols are mapped to register pair "a5:a4".
When a register pair syntax is used as the argument to a .reg directive (as shown), it means that the two
register symbols are constrained to be an aligned register pair when the compiler processes the linear
assembler source and allocates actual registers that the register pair symbols map to "r1:r0" as shown.

The 7.2. Beta compiler supports a register quad syntax (C6600 only), in order to specify 128-bit operands
of 128-bit capable instructions in linear assembly and assembly source code. Example 4-4 illustrates how
you can specify register quads:

Example 4-4. Specifying a Register Quad (C6600 Only)

. gl obal fooquad
fooquad: .cproc g3:qg2:ql:q0, s3:s2:s1:s0
.reg r3:r2:rl:r0
QWY32 s3:s52:s51:s0, 03:92:ql:q0, r3:r2:r1:r0
.return r3:r2:rl:r0
. endproc

SPRU187T-July 2011 Using the Assembly Optimizer 111

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

What You Need to Know to Write Linear Assembly www.ti.com

In Example 4-4, the expression "q3:92:gq1:q0" means that the first argument into the linear assembly
function is a register quad. By the C calling conventions, the quad "q3:g2:g1:q0" symbols are mapped to
register quad "a7:a6:a5:a4". When a register quad syntax is used as the argument to a .reg directive (as
shown), it means that the four register symbols are constrained to be an aligned register quad when the
compiler processes the linear assembler source and allocates actual registers that the register quad
symbols map to "r3:r2:r1:r0" as shown.

4.3.3 Functional Unit Specification for Linear Assembly
Specifying functional units has been deprecated by the ability to partition registers directly. (See
Section 4.3.2 for details.) While you can use the unit specifier field in linear assembly, only the register
side information is used by the compiler.
You specify a functional unit by following the assembler instruction with a period (.) and a functional unit
specifier. One instruction can be assigned to each functional unit in a single instruction cycle. There are
eight functional units, two of each functional type, and two address paths. The two of each functional type
are differentiated by the data path each uses, A or B.
.D1 and .D2 Data/addition/subtraction operations
.L1and .L2 Arithmetic logic unit (ALU)/compares/long data arithmetic
.M1 and .M2 Multiply operations
.Sl and .S2 Shift/ALU/branch/field operations
.T1and .T2 Address paths
There are several ways to enter the unit specifier filed in linear assembly. Of these, only the specific
register side information is recognized and used:
* You can specify the particular functional unit (for example, .D1).
* You can specify the .D1 or .D2 functional unit followed by T1 or T2 to specify that the nonmemory
operand is on a specific register side. T1 specifies side A and T2 specifies side B. For example:
LDW .D1T2 *A3[A4], B3
LDW .D1T2 *src, dst
* You can specify only the data path (for example, .1), and the assembly optimizer assigns the functional
type (for example, .L1).
For more information on functional units refer to the TMS320C6000 CPU and Instruction Set Reference
Guide.
4.3.4 Using Linear Assembly Source Comments
Your comments in linear assembly can begin in any column and extend to the end of the source line. A
comment can contain any ASCII character, including blanks. Your comments are printed in the linear
assembly source listing, but they do not affect the linear assembly.
A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.
The assembly optimizer schedules instructions; that is, it rearranges instructions. Stand-alone comments
are moved to the top of a block of instructions. Comments at the end of an instruction statement remain in
place with the instruction.
Example 4-5 shows code for a function called Lmac that contains comments.
112 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

What You Need to Know to Write Linear Assembly

Example 4-5. Lmac Function Code Showing Comments

Lmac: . cproc A4, B4

.reg t0,t1,p,i,sh:sl

MVK 100, i
ZERO sh
ZERO sl
| oop: .trip 100
LDH *ad++, tO0 to = afi]
LDH *b4++, t1 tl = b[i]
MPY t0,t1,p prod =t0 * t1
ADD p, sh:sl, sh:sl sum += prod
[1] ADD 10,0 --1
[1] B | oop if (1) goto |oop

.return sh:sl

.endproc

4.3.5 Assembly File Retains Your Symbolic Register Names

In the output assembly file, register operands contain your symbolic name. This aids you in debugging
your linear assembly files and in gluing snippets of linear assembly output into assembly files.

A .map directive (see the .map topic) at the beginning of an assembly function associates the symbolic
name with the actual register. In other words, the symbolic name becomes an alias for the actual register.
The .map directive can be used in assembly and linear assembly code.

When the compiler splits a user symbol into two symbols and each is mapped to distinct machine register,
a suffix is appended to instances of the symbolic name to generate unique names so that each unique
name is associated with one machine register.

For example, if the compiler associated the symbolic name y with A5 in some instructions and B6 in some
others, the output assembly code might look like:

.MAP y/ A5
.MAP y' / B6

ADD .S2X 'y, 4, y' ; Equivalent to add A5, 4, B6

To disable this format with symbolic hames and display assembly instructions with actual registers
instead, compile with the --machine_regs option.

SPRU187T-July 2011
Submit Documentation Feedback

Using the Assembly Optimizer 113

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Assembly Optimizer Directives

13 TEXAS
INSTRUMENTS

www.ti.com

Copyright © 2011, Texas Instruments Incorporated

4.4 Assembly Optimizer Directives
Assembly optimizer directives supply data for and control the assembly optimization process. The
assembly optimizer optimizes linear assembly code that is contained within procedures; that is, code
within the .proc and .endproc directives or within the .cproc and .endproc directives. If you do not use
.cproc/.proc directives in your linear assembly file, your code will not be optimized by the assembly
optimizer. This section describes these directives and others that you can use with the assembly
optimizer.
Table 4-2 summarizes the assembly optimizer directives. It provides the syntax for each directive, a
description of each directive, and any restrictions that you should keep in mind. See the specific directive
topic for more detail.
In Table 4-2 and the detailed directive topics, the following terms for parameters are used:
argument— Symbolic variable name or machine register
memref— Symbol used for a memory reference (not a register)
register— Machine (hardware) register
symbol— Symbolic user name or symbolic register name
variable— Symbolic variable name or machine register
Table 4-2. Assembly Optimizer Directives Summary
Syntax Description Restrictions
.call [ret_reg =] func_name (argument, , Calls a function Valid only within procedures
argument, , ...)
.circ symbol, / register, [, symbol, / Declares circular addressing Must manually insert setup/teardown code
register,] for circular addressing. Valid only within
procedures
label .cproc [argument, [, argument, , ...]] Start a C/C++ callable procedure Must use with .endproc
.endproc End a C/C++ callable procedure Must use with .cproc
.endproc [variable, [, variable,,...]] End a procedure Must use with .proc
.map symbol, / register, [, symbol, / Assigns a symbol to a register Must use an actual machine register
register,]
.mdep [memref, [, memref,]] Indicates a memory dependence Valid only within procedures
.mptr {variable|memref}, base [+ offset] Avoid memory bank conflicts Valid only within procedures
[, stride]
.no_mdep No memory aliases in the function Valid only within procedures
.pref symbol / register, [/register, /...] Assigns a symbol to a register in a set Must use actual machine registers
label .proc [variable, [, variable, , ...]] Start a procedure Must use with .endproc
.reg symbol, [, symbol, ,...] Declare variables Valid only within procedures
.rega symbol, [, symbol, ,...] Partition symbol to A-side register Valid only within procedures
.regb symbol, [, symbol, ,...] Partition symbol to B-side register Valid only within procedures
.reserve [register, [, register, ,...]] Prevents the compiler from allocating a Valid only within procedures
register
.return [argument] Return a value to a procedure Valid only within .cproc procedures
label .trip min Specify trip count value Valid only within procedures
.volatile memref, [, memref, ,...] Designate memory reference volatile Use --interrupt_threshold=1 if reference
may be modified during an interrupt
114 Using the Assembly Optimizer

SPRU187T-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

.call — Calls a Function

.call

Syntax

Description

Calls a Function

.call [ret_reg=] func_name ([argument,, argument,,...])

Use the .call directive to call a function. Optionally, you can specify a register that is
assigned the result of the call. The register can be a symbolic or machine register. The
.call directive adheres to the same register and function calling conventions as the
C/C++ compiler. For information, see Section 7.3 and Section 7.4. There is no support
for alternative register or function calling conventions.

You cannot call a function that has a variable number of arguments, such as printf. No
error checking is performed to ensure the correct number and/or type of arguments is
passed. You cannot pass or return structures through the .call directive.

Following is a description of the .call directive parameters:
ret_reg (Optional) Symbolic/machine register that is assigned the result of the
call. If not specified, the assembly optimizer presumes the call
overwrites the registers A5 and A4 with a result.

The name of the function to call, or the name of the symbolic/
machine register for indirect calls. A register pair is not allowed. The
label of the called function must be defined in the file. If the code for
the function is not in the file, the label must be defined with the .global
or .ref directive (refer to the TMS320C6000 Assembly Language
Tools User's Guide for details). If you are calling a C/C++ function,
you must use the appropriate linkname of that function. See

Section 6.12 for more information.

(Optional) Symbolic/machine registers passed as an argument. The
arguments are passed in this order and cannot be a constant,
memory reference, or other expression.

func_name

arguments

By default, the compiler generates near calls and the linker utilizes trampolines if the

near call will not reach its destination. To force a far call, you must explicitly load the

address of the function into a register, and then issue an indirect call. For example:
MK func, reg
MVKH func, reg
.call reg(opl)

If you want to use * for indirection, you must abide by C/C++ syntax rules, and use the
following alternate syntax:

; forcing a far cal

.call [ret_reg =] (* ireg)([argl, arg2,...])

For example:
.call (*driver)(opl, op2) ; indirect cal
.reg driver
.call driver(opl, op2) al so an indirect cal

Here are other valid examples that use the .call syntax.

.call fir(x, h, vy) ; void function
.call mnimal () no argumnents

.call sum= vecsun(a, b) returns an int
.call hi:lo = _atol (string) returns a | ong

Since you can use machine register names anywhere you can use symbolic registers, it
may appear you can change the function calling convention. For example:

.call A6 = conpute()

SPRU187T—-July 2011

Using the Assembly Optimizer 115

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

.circ — Declare Circular Registers www.ti.com

It appears that the result is returned in A6 instead of A4. This is incorrect. Using machine
registers does not override the calling convention. After returning from the compute
function with the returned result in A4, a MV instruction transfers the result to A6.

Example Here is a complete .call example:
.global _nain
.global _puts, _rand, _ltoa
. sect ".const"
stringl: .string "The random value returned is ", O
string2: .string " ", 10, 0 ; '10' == newine
. bss charbuf, 20
.text
_main: .cproc
.reg random val ue, bufptr, ran_val _hi:ran_val _lo
.call random val ue = _rand() ; get a random val ue
MVKL stringl, bufptr ; |l oad address of stringl
MVKH stringl, bufptr
.call _puts(bufptr) ; print out stringl
\Y random val ue, ran_val _|o
SHR ran_val _l o, 31, ran_val _hi ; sign extend random val ue
.call _ltoa(ran_val _hi:ran_val | o, bufptr) ; convert it to a string
.call _puts(bufptr) ; print out the random val ue
MVKL string2, bufptr ; 1 oad address of string2
MVKH string2, bufptr
.call _puts(bufptr) ; print out a newine
. endproc
.circ Declare Circular Registers
Syntax .circ symbol, /register, [, symbol, Iregister, , ...]
Description The .circ directive assigns a symbolic register name to a machine register and declares

the symbolic register as available for circular addressing. The compiler then assigns the
variable to the register and ensures that all code transformations are safe in this
situation. You must insert setup/teardown code for circular addressing.

symbol A valid symbol name to be assigned to the register. The variable is up
to 128 characters long and must begin with a letter. Remaining
characters of the variable can be a combination of alphanumeric
characters, the underscore (_), and the dollar sign ($).

register Name of the actual register to be assigned a variable.

The compiler assumes that it is safe to speculate any load using an explicitly declared
circular addressing variable as the address pointer and may exploit this assumption to
perform optimizations.

When a symbol is declared with the .circ directive, it is not necessary to declare that
symbol with the .reg directive.

The .circ directive is equivalent to using .map with a circular declaration.

Example Here the symbolic name Ri is assigned to actual machine register Mi and Ri is declared
as potentially being used for circular addressing.

.CIRC R1/M, R2/M ..

116 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

.cproc/.endproc — Define a C Callable Procedure

.cproc/.endproc

Syntax

Description

Define a C Callable Procedure

label .cproc [argument, [, argument, , ...]]
.endproc

Use the .cproc/.endproc directive pair to delimit a section of your code that you want
the assembly optimizer to optimize and treat as a C/C++ callable function. This section is
called a procedure. The .cproc directive is similar to the .proc directive in that you use
.cproc at the beginning of a section and .endproc at the end of a section. In this way, you
can set off sections of your assembly code that you want to be optimized, like functions.
The directives must be used in pairs; do not use .cproc without the corresponding
.endproc. Specify a label with the .cproc directive. You can have multiple procedures in a
linear assembly file.

The .cproc directive differs from the .proc directive in that the compiler treats the .cproc
region as a C/C++ callable function. The assembly optimizer performs some operations
automatically in a .cproc region in order to make the function conform to the C/C++
calling conventions and to C/C++ register usage conventions.

These operations include the following:

* When you use save-on-entry registers (A10 to A15 and B10 to B15), the assembly
optimizer saves the registers on the stack and restores their original values at the
end of the procedure.

« If the compiler cannot allocate machine registers to symbolic register names specified
with the .reg directive (see the .reg topic) it uses local temporary stack variables. With
.cproc, the compiler manages the stack pointer and ensures that space is allocated
on the stack for these variables.

For more information, see Section 7.3 and Section 7.4.

Use the optional argument to represent function parameters. The argument entries are
very similar to parameters declared in a C/C++ function. The arguments to the .cproc
directive can be of the following types:

* Machine-register names. If you specify a machine-register name, its position in the
argument list must correspond to the argument passing conventions for C (see
Section 7.4). For example, the C/C++ compiler passes the first argument to a
function in register A4. This means that the first argument in a .cproc directive must
be A4 or a symbolic name. Up to ten arguments can be used with the .cproc
directive.

» Variable names.If you specify a variable name, then the assembly optimizer ensures
that either the variable name is allocated to the appropriate argument passing
register or the argument passing register is copied to the register allocated for the
variable name. For example, the first argument in a C/C++ call is passed in register
A4, so if you specify the following .cproc directive:

frame .cproc argl

The assembly optimizer either allocates argl to A4, or argl is allocated to a different
register (such as B7) and an MV A4, B7 is automatically generated.

* Register pairs. A register pair is specified as arghi:arglo and represents a 40-bit
argument or a 64-bit type double argument.

For example, the .cproc defined as follows:
_fen: .cproc argl, argzhi:arg2lo, arg3, B6, arg5, B9:B8
.return res
. endproc
corresponds to a C function declared as:
int fen(int argl, long arg2, int arg3, int arg4, int arg5, |ong arg6);
In this example, the fourth argument of .cproc is register B6. This is allowed since the

SPRU187T—-July 2011

Using the Assembly Optimizer 117

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

.cproc/.endproc — Define a C Callable Procedure www.ti.com

fourth argument in the C/C++ calling conventions is passed in B6. The sixth
argument of .cproc is the actual register pair B9:B8. This is allowed since the sixth
argument in the C/C++ calling conventions is passed in B8 or B9:B8 for longs.

+ Register quads (C6600 only). A register quad is specified as r3:r2:r1:r0 and
represents a 128-bit type, _ x128 t. See Example 4-4.

If you are calling a procedure from C++ source, you must use the appropriate linkname
for the procedure label. Otherwise, you can force C naming conventions by using the
extern C declaration. See Section 6.12 and Section 7.5 for more information.

When .endproc is used with a .cproc directive, it cannot have arguments. The live out set
for a .cproc region is determined by any .return directives that appear in the .cproc
region. (A value is live out if it has been defined before or within the procedure and is
used as an output from the procedure.) Returning a value from a .cproc region is
handled by the .return directive. The return branch is automatically generated in a .cproc
region. See the .return topic for more information.

Only code within procedures is optimized. The assembly optimizer copies any code that
is outside of procedures to the output file and does not modify it. See Section 4.4.1 for a
list of instruction types that cannot appear in a .cproc region.

Example Here is an example in which .cproc and .endproc are used:
_if_then: .cproc a, cword, nmask, theta
.reg cond, if, ai, sum cntr
MVK 32, cntr ,ocntr = 32
ZERO sum ; sum= 0
LOOP:
AND cwor d, mask, cond ; cond = codeword & mask
[cond] MWK 1, cond ; !1(!(cond))
CVPEQ theta, cond,if ; (theta == 1(!(cond)))
LDH *a++, ai ;oali]
[if] ADD sum ai, sum ;o osum += afi]
[tif] SuUB sum ai, sum ;o osum-= afi]
SHL mask, 1, mask ; mask = mask << 1
[entr] ADD -1,cntr,cntr ; decrenent counter
[cntr] B LOooP ; for LOOP
.return sum
. endproc
118 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
www.ti.com .map — Assign a Variable to a Register
.map Assign a Variable to a Register
Syntax .map symbol, / register, [, symbol, / register, , ...]
Description The .map directive assigns symbol names to machine registers. Symbols are stored in

the substitution symbol table. The association between symbolic names and actual
registers is wiped out at the beginning and end of each linear assembly function. The
.map directive can be used in assembly and linear assembly files.

variable A valid symbol name to be assigned to the register. The substitution
symbol is up to 128 characters long and must begin with a letter.
Remaining characters of the variable can be a combination of
alphanumeric characters, the underscore (_), and the dollar sign ($).

register Name of the actual register to be assigned a variable.

When a symbol is declared with the .map directive, it is not necessary to declare that
symbol with the .reg directive.

Example Here the .map directive is used to assign x to register A6 and y to register B7. The
symbols are used with a move statement.

.map x/ A6, yl/B7

W X,y ; equivalent to W A6, B7
.mdep Indicates a Memory Dependence
Syntax .mdep memref, , memref,
Description The .mdep directive identifies a specific memory dependence.

Following is a description of the .mdep directive parameters:

memref The symbol parameter is the name of the memory reference.

The symbol used to name a memory reference has the same syntax restrictions as any
assembly symbol. (For more information about symbols, refer to the TMS320C6000
Assembly Language Tools User's Guide.) It is in the same space as the symbolic
registers. You cannot use the same name for a symbolic register and annotating a
memory reference.

The .mdep directive tells the assembly optimizer that there is a dependence between
two memory references.

The .mdep directive is valid only within procedures; that is, within occurrences of the
.proc and .endproc directive pair or the .cproc and .endproc directive pair.

Example Here is an example in which .mdep is used to indicate a dependence between two
memory references.

.ndep 1dl, st1l

LDW *pl++{ld1l}, inpl ;nmenory reference "I dl"
;other code ...
STW outp2, *p2++{stl} ;nmenory reference "st1l"

SPRU187T-July 2011 Using the Assembly Optimizer 119

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

.mptr — Avoid Memory Bank Conflicts www.ti.com

.mptr

Syntax

Description

Example

Avoid Memory Bank Conflicts

.mptr {variable | memref}, base [+ offset] [, stride]

The .mptr directive associates a register with the information that allows the assembly
optimizer to determine automatically whether two memory operations have a memory
bank conflict. If the assembly optimizer determines that two memory operations have a
memory bank conflict, then it does not schedule them in parallel.

A memory bank conflict occurs when two accesses to a single memory bank in a given
cycle result in a memory stall that halts all pipeline operation for one cycle while the
second value is read from memory. For more information on memory bank conflicts,
including how to use the .mptr directive to prevent them, see Section 4.5.

Following are descriptions of the .mptr directive parameters:

variablelmemref The name of the register symbol or memory reference used to identify
a load or store involved in a dependence.

base A symbolic address that associates related memory accesses

offset The offset in bytes from the starting base symbol. The offset is an
optional parameter and defaults to 0.

stride The register loop increment in bytes. The stride is an optional
parameter and defaults to O.

The .mptr directive tells the assembly optimizer that when the symbol or memref is used
as a memory pointer in an LD(B/BU)(H/HU)(W) or ST(B/H/W) instruction, it is initialized
to point to base + offset and is incremented by stride each time through the loop.

The .mptr directive is valid within procedures only; that is, within occurrences of the .proc
and .endproc directive pair or the .cproc and .endproc directive pair.

The symbolic addresses used for base symbol names are in a name space separate
from all other labels. This means that a symbolic register or assembly label can have the
same name as a memory bank base name. For example:

.nptr Darray, Darray

Here is an example in which .mptr is used to avoid memory bank conflicts.

_bl kcp: .cproc |

.reg ptrl, ptr2, tnpl, tnp2

MVK 0x0, ptri ; ptrl = address O
MVK 0x8, ptr2 ; ptr2 = address 8
| oop: .trip 50

.nptr ptrl, a+0, 4
.nptr foo, at+8, 4

; potential conflict
LDW *ptril++, tnpl ; load *0, bank O
STW tnpl, *ptr2++{foo} ; store *8, bank 0

[11] ADD -1,i0,i N I
[1] B | oop ; if (10) goto loop

. endpr oc

120 Using the Assembly Optimizer

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com .no_mdep — No Memory Aliases in the Function

.no_mdep No Memory Aliases in the Function

Syntax .no_mdep

Description The .no_mdep directive tells the assembly optimizer that no memory dependencies
occur within that function, with the exception of any dependencies pointed to with the
.mdep directive.

Example Here is an example in which .no_mdep is used.

fn: .cproc dst, src, cnt
. no_ndep ;no nenory aliasing in this function

:;a.ndpr oc
pref Assign a Variable to a Register in a Set

Syntax .pref symbol / register, [/register,...]

Description The .pref directive communicates a preference to assign a variable to one of a list of
registers. The preference is used only in the .cproc or .proc region the .pref directive is
declared in and is valid only until the end of the region.

symbol A valid symbol name to be assigned to the register. The substitution
symbol is up to 128 characters long and must begin with a letter.
Remaining characters of the symbol can be a combination of
alphanumeric characters, the underscore (_), and the dollar sign ($).

register List of actual registers to be assigned a variable.

There is no guarantee that the symbol will be assigned to any register in the specified
group. The compiler may ignore the preference.

When a symbol is declared with the .pref directive, it is not necessary to declare that
variable with the .reg directive.

Example Here x is given a preference to be assigned to either A6 or B7. However, It would be
correct for the compiler to assign x to B3 (for example) instead.

. PREF x/ A6/ B7 ; Preference to assign x to either A6 or B7

.proc/.endproc Define a Procedure

Syntax label .proc [variable, [, variable, , ...]]
.endproc [register, [, register, , ...]]

Description Use the .proc/.endproc directive pair to delimit a section of your code that you want the
assembly optimizer to optimize. This section is called a procedure. Use .proc at the
beginning of the section and .endproc at the end of the section. In this way, you can set
off sections of unscheduled assembly instructions that you want optimized by the
compiler. The directives must be used in pairs; do not use .proc without the
corresponding .endproc. Specify a label with the .proc directive. You can have multiple
procedures in a linear assembly file.

Use the optional variable parameter in the .proc directive to indicate which registers are
live in, and use the optional register parameter of the .endproc directive to indicate which
registers are live out for each procedure. The variable can be an actual register or a
symbolic name. For example:

.PROC x, A5, y, B7

. ENDPRCC y

SPRU187T-July 2011 Using the Assembly Optimizer 121

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

.reg — Declare Symbolic Registers www.ti.com

A value is live in if it has been defined before the procedure and is used as an input to
the procedure. A value is live out if it has been defined before or within the procedure
and is used as an output from the procedure. If you do not specify any registers with the
.endproc directive, it is assumed that no registers are live out.

Only code within procedures is optimized. The assembly optimizer copies any code that
is outside of procedures to the output file and does not modify it.

See Section 4.4.1 for a list of instruction types that cannot appear in a .proc region.

Example Here is a block move example in which .proc and .endproc are used:

nove .proc A4, B4, BO
. no_ndep

| oop:
LDW *B4++, Al
W Al, Bl
STW Bl, *Ad++
ADD -4, BO, BO

[BO] B | oop

. endproc

.reg Declare Symbolic Registers

Syntax .reg symbol, [, symbol, , ...]

Description The .reg directive allows you to use descriptive names for values that are stored in
registers. The assembly optimizer chooses a register for you such that its use agrees
with the functional units chosen for the instructions that operate on the value.

The .reg directive is valid within procedures only; that is, within occurrences of the .proc
and .endproc directive pair or the .cproc and .endproc directive pair.
Declaring register pairs (or register quads for C6600) explicitly is optional. Doing so is
only necessary if the registers should be allocated as a pair, but they are not used that
way. It is a best practice to declare register pairs and register quads with the pair/quad
syntax. Here is an example of declaring a register pair:

.reg AT7: A6

Example 1 This example uses the same code as the block move example shown for .proc/.endproc
but the .reg directive is used:
nmove . cproc dSt, src, cnt

.reg tnpl, tnp2
| oop:
LDW *src++, tnpl
W tnmpl, tnp2
STW tnp2, *dst++
ADD -4, cnt, cnt
[ent] B | oop
Notice how this example differs from the .proc example: symbolic registers declared with
.reg are allocated as machine registers.

Example 2 The code in the following example is invalid, because a variable defined by the .reg
directive cannot be used outside of the defined procedure:
nove .proc A4

.reg t np

LDW *Ad++, top

W top, B5

. endproc

W top, B6 ; WRONG top is invalid outside of the procedure

122 Using the Assembly Optimizer

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com .regal.regb — Partition Registers Directly

.regal/.regb Partition Registers Directly

Syntax .rega symbol, [, symbol, , ...]
.regb symbol, [, symbol, , ...]

Description Registers can be directly partitioned through two directives. The .rega directive is used
to constrain a symbol name to A-side registers. The .regb directive is used to constrain
a symbol name to B-side registers. For example:
.REGA y
.REGB u, v, w
w X, Y
LDW *u, v:w

The .rega and .regb directives are valid within procedures only; that is, within
occurrences of the .proc and .endproc directive pair or the .cproc and .endproc directive
pair.

When a symbol is declared with the .rega or .regb directive, it is not necessary to declare
that symbol with the .reg directive.

The old method of partitioning registers indirectly by partitioning instructions can still be
used. Side and functional unit specifiers can still be used on instructions. However,
functional unit specifiers (.L/.S/.D/.M) and crosspath information are ignored. Side
specifiers are translated into partitioning constraints on the corresponding symbol
names, if any. For example:

W L 1X z, y ; translated to . REGA y
LDW. D2T2 *u, v:w ; translated to .REGB u, v, w

.reserve Reserve a Register

Syntax .reserve [register, [, register, , ...]]

Description The .reserve directive prevents the assembly optimizer from using the specified register
in a .proc or .cproc region.

If a .reserved register is explicitly assigned in a .proc or .cproc region, then the assembly
optimizer can also use that register. For example, the variable tmp1l can be allocated to
register A7, even though it is in the .reserve list, since A7 was explicitly defined in the
ADD instruction:

. cproc

.reserve a7

.reg tnmpl

ADD a6, b4, a7

. endproc

Reserving Registers A4 and A5

NOTE: When inside of a .cproc region that contains a .call statement, A4 and
A5 cannot be specified in a .reserve statement. The calling convention
mandates that A4 and A5 are used as the return registers for a .call
statement.

Example 1 The .reserve in this example guarantees that the assembly optimizer does not use A10
to A13 or B10 to B13 for the variables tmp1 to tmp5:

test .proc a4, b4

.reg tnpl, tnp2, tnp3, tnp4, tnp5
.reserve al0, all, al2, al3, bl0, bll, bl2, bil3

SPRU187T-July 2011 Using the Assembly Optimizer 123

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS

.reserve — Reserve a Register www.ti.com
.endproc a4

124 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

.return — Return a Value to a C callable Procedure

Example 2

.return

Syntax

Description

Example

The assembly optimizer may generate less efficient code if the available register pool is
overly restricted. In addition, it is possible that the available register pool is constrained
such that allocation is not possible and an error message is generated. For example, the
following code generates an error since all of the conditional registers have been
reserved, but a conditional register is required for the variable tmp:

.cproc ...

.reserve al, a2, b0, b1, b2

.reg tnp

[trp]
. endproc
Return a Value to a C callable Procedure

.return [argument]

The .return directive function is equivalent to the return statement in C/C++ code. It
places the optional argument in the appropriate register for a return value as per the
C/C++ calling conventions (see Section 7.4).

The optional argument can have the following meanings:

» Zero arguments implies a .cproc region that has no return value, similar to a void
function in C/C++ code.

« An argument implies a .cproc region that has a 32-bit return value, similar to an int
function in C/C++ code.

* Aregister pair of the format hi:lo implies a .cproc region that has a 40-bit long, a
64-bit long long, or a 64-bit type double return value; similar to a long/long
long/double function in C/C++ code.

Arguments to the .return directive can be either symbolic register names or
machine-register names.

All return statements in a .cproc region must be consistent in the type of the return value.
It is not legal to mix a .return arg with a .return hi:lo in the same .cproc region.

The .return directive is unconditional. To perform a conditional .return, simply use a
conditional branch around a .return. The assembly optimizer removes the branch and
generates the appropriate conditional code. For example, to return if condition cc is true,
code the return as:
[tcc] B around

.return
around:

This example uses a symbolic register, tmp, and a machine-register, A5, as .return
arguments:

.cproc ...
.reg tnp

.return tnp = |l egal synbolic nane
.return a5 = | egal actual nane

SPRU187T—-July 2011

Using the Assembly Optimizer 125

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
.trip — Specify Trip Count Values www.ti.com
trip Specify Trip Count Values
Syntax label .trip minimum value [, maximum value], factor]]
Description The .trip directive specifies the value of the trip count. The trip count indicates how

many times a loop iterates. The .trip directive is valid within procedures only. Following
are descriptions of the .trip directive parameters:

label The label represents the beginning of the loop. This is a required
parameter.

minimum value The minimum number of times that the loop can iterate. This is a
required parameter. The default is 1.

maximum value The maximum number of times that the loop can iterate. The
maximum value is an optional parameter.

factor The factor used, along with minimum value and maximum value, to
determine the number of times that the loop can iterate. In the
following example, the loop executes some multiple of 8, between 8

and 48, times:
loop: .trip 8, 48, 8

A factor of 2 states that your loop always executes an even number
of times allowing the compiler to unroll once; this can result in a
performance increase.

The factor is optional when the maximum value is specified.

If the assembly optimizer cannot ensure that the trip count is large enough to pipeline a
loop for maximum performance, a pipelined version and an unpipelined version of the
same loop are generated. This makes one of the loops a redundant loop. The pipelined
or the unpipelined loop is executed based on a comparison between the trip count and
the number of iterations of the loop that can execute in parallel. If the trip count is
greater or equal to the number of parallel iterations, the pipelined loop is executed;
otherwise, the unpipelined loop is executed. For more information about redundant
loops, see Section 3.3.

You are not required to specify a .trip directive with every loop; however, you should use
trip if you know that a loop iterates some number of times. This generally means that
redundant loops are not generated (unless the minimum value is really small) saving
code size and execution time.

If you know that a loop always executes the same number of times whenever it is called,
define maximum value (where maximum value equals minimum value) as well. The
compiler may now be able to unroll your loop thereby increasing performance.

When you are compiling with the interrupt flexibility option (--interrupt_threshold=n),
using a .trip maximum value allows the compiler to determine the maximum number of
cycles that the loop can execute. Then, the compiler compares that value to the
threshold value given by the --interrupt_threshold option. See Section 2.12 for more
information.

126 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS

www.ti.com .volatile — Declare Memory References as Volatile

Example The .trip directive states that the loop will execute 16, 24, 32, 40 or 48 times when the
w_vecsum routine is called.
w_vecsum .cproc ptr_a, ptr_b, ptr_c, weight,

.reg ai, bi, prod, scaled_prod, c
. no_ndep
| oop: .trip 16, 48, 8

I dh *ptr_a++, a
I dh *ptr_b++, bi
my wei ght, ai, prod
shr prod, 15, scal ed_prod
add scal ed_prod, bi, c
sth ci, *ptr_c++

[ent] sub cnt, 1, cnt

[cnt] b | oop
. endproc

.volatile Declare Memory References as Volatile

Syntax .volatile memref, [, memref, , ...]

Description The .volatile directive allows you to designate memory references as volatile. Volatile
loads and stores are not deleted. Volatile loads and stores are not reordered with
respect to other volatile loads and stores.

If the .volatile directive references a memory location that may be modified during an
interrupt, compile with the --interrupt_threshold=1 option to ensure all code referencing
the volatile memory location can be interrupted.

Example The st and Id memory references are designated as volatile.

.volatile st,

STW W *X{st}

STW U, *V

LDW*Y{I d}, Z

Id

vol atile store

; volatile | oad

SPRU187T—-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Using the Assembly Optimizer

127

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

.volatile — Declare Memory References as Volatile www.ti.com

4.4.1 Instructions That Are Not Allowed in Procedures

These types of instructions are not allowed in .cproc or .proc topic regions:

« The stack pointer (register B15) can be read, but it cannot be written to. Instructions that write to B15
are not allowed in a .proc or .cproc region. Stack space can be allocated by the assembly optimizer in
a .proc or .cproc region for storage of temporary values. To allocate this storage area, the stack pointer
is decremented on entry to the region and incremented on exit from the region. Since the stack pointer
can change value on entry to the region, the assembly optimizer does not allow code that changes the
stack pointer register.

» Indirect branches are not allowed in a .proc or .cproc region so that the .proc or .cproc region exit
protocols cannot be bypassed. Here is an example of an indirect branch:
B B4 <= illegal
» Direct branches to labels not defined in the .proc or .cproc region are not allowed so that the .proc or
.cproc region exit protocols cannot be bypassed. Here is an example of a direct branch outside of a
.proc region:
. proc

B outside = illegal
.endproc
out si de:

» Direct branches to the label associated with a .proc directive are not allowed. If you require a branch
back to the start of the linear assembly function, then use the .call directive. Here is an example of a
direct branch to the label of a .proc directive:

_func: .proc
i3. ._f unc <= illegal
: ;a.ndpr oc
* An .if/.endif loop must be entirely inside or outside of a proc or .cproc region. It is not allowed to have
part of an .if/.endif loop inside of a .proc or .cproc region and the other part of the .if/.endif loop outside

of the .proc or .cproc region. Here are two examples of legal .if/.endif loops. The first loop is outside a
.cproc region, the second loop is inside a .proc region:

Jif

. cproc

. endpr oc
.endi f

. proc

i f

endi f

. endproc
Here are two examples of .if/.endif loops that are partly inside and partly outside of a .cproc or .proc
region;

i

. cproc

.endi f
. endpr oc

. proc
i
el se
. endpr oc
.endif
* The following assembly instructions cannot be used from linear assembly:
— EFI
— SPLOOP, SPLOOPD and SPLOOPW and all other loop-buffer related instructions

128 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Avoiding Memory Bank Conflicts With the Assembly Optimizer

— C6700+ instructions
— ADDKSP and DP-relative addressing

4.5 Avoiding Memory Bank Conflicts With the Assembly Optimizer

The internal memory of the C6000 family varies from device to device. See the appropriate device data
sheet to determine the memory spaces in your particular device. This section discusses how to write code
to avoid memory bank conflicts.

Most C6000 devices use an interleaved memory bank scheme, as shown in Figure 4-1. Each number in
the diagram represents a byte address. A load byte (LDB) instruction from address 0 loads byte O in

bank 0. A load halfword (LDH) from address 0 loads the halfword value in bytes 0 and 1, which are also in
bank 0. A load word (LDW) from address 0 loads bytes 0 through 3 in banks 0 and 1.

Because each bank is single-ported memory, only one access to each bank is allowed per cycle. Two
accesses to a single bank in a given cycle result in a memory stall that halts all pipeline operation for one
cycle while the second value is read from memory. Two memory operations per cycle are allowed without
any stall, as long as they do not access the same bank.

Figure 4-1. 4-Bank Interleaved Memory

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

8N |8N+1| |8N+2|8N+3 8N+48N+5| [8N+6|8N+7

Bank O Bank 1 Bank 2 Bank 3

For devices that have more than one memory space (Figure 4-2), an access to bank 0 in one memory
space does not interfere with an access to bank 0 in another memory space, and no pipeline stall occurs.

Figure 4-2. 4-Bank Interleaved Memory With Two Memory Spaces

Memory

2 3 4 5 6 7
space O

9 10 11 12 13 14 15

8N [8N+1 8N + 2|8N + 3 8N +4|8N +5 8N +6|8N + 7

Bank 0 Bank 1 Bank 2 Bank 3
Memory 8M [8M+1 8M + 2|8M + 3 8M + 4(8M + 5 8M +6(8M + 7
space 1
L] L] L] L] L] L] L] L]
L] L] L] L] L] L] L] L]
L] L] L] L] L] L] L] L]
Bank 0 Bank 1 Bank 2 Bank 3
SPRU187T-July 2011 Using the Assembly Optimizer 129

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Avoiding Memory Bank Conflicts With the Assembly Optimizer www.ti.com

45.1 Preventing Memory Bank Conflicts

The assembly optimizer uses the assumptions that memory operations do not have bank conflicts. If it
determines that two memory operations have a bank conflict on any loop iteration it does not schedule the
operations in parallel. The assembly optimizer checks for memory bank conflicts only for those loops that
it is trying to software pipeline.

The information required for memory bank analysis indicates a base, an offset, a stride, a width, and an
iteration delta. The width is implicitly determined by the type of memory access (byte, halfword, word, or
double word for the C6400 and C6700). The iteration delta is determined by the assembly optimizer as it
constructs the schedule for the software pipeline. The base, offset, and stride are supplied by the load and
store instructions and/or by the .mptr directive.

An LD(B/BU)(H/HU)(W) or ST(B/H/W) operation in linear assembly can have memory bank information
associated with it implicitly, by using the .mptr directive. The .mptr directive associates a register with the
information that allows the assembly optimizer to determine automatically whether two memory operations
have a bank conflict. If the assembly optimizer determines that two memory operations have a memory
bank conflict, then it does not schedule them in parallel within a software pipelined loop. The syntax is:

.mptr variable , base + offset , stride

For example:

.nmptr a_0, a+0, 16
.nptr a_4,a+4, 16
LDW*a_0++[4], vall ; base=a, offset=0, stride=16
LDW*a_4++[4], val2 ; base=a, offset=4, stride=16
.nmptr dptr, D+0, 8

LDH *dptr++, dO ; base=D, offset=0, stride=8
LDH *dptr++, dl1 ; base=D, offset=2, stride=8
LDH *dptr++, d2 ; base=D, offset=4, stride=8
LDH *dptr++, d3 ; base=D, offset=6, stride=8

In this example, the offset for dptr is updated after every memory access. The offset is updated only when
the pointer is modified by a constant. This occurs for the pre/post increment/decrement addressing modes.

See the .mptr topic for more information.

Example 4-6 shows loads and stores extracted from a loop that is being software pipelined.

Example 4-6. Load and Store Instructions That Specify Memory Bank Information

.nmptr Ain,IN-16
.nmptr Bin, IN4,-16

.nmptr Aco, CCEF, 16
.nptr Bco, COEF+4, 16

.nmptr Aout, optr +0, 4
.nmptr Bout , optr+2, 4

LDW *Ain--[2], Al n12 i IN(k-1) & IN(k-1+1)
LDW *Bin--[2], Bin23 i IN(k-1-2) & IN(k-1-1)
LDW *Ain--[2], A n34 i IN(k-1-4) & IN(k-1-3)
LDW *Bin--[2], Bin56 i IN(k-1-6) & IN(k-1-5)
LDW *Bco++[2], Bcol2 ; COEF(1) & COEF(I1+1)
LDW *Aco++[2], Aco23 ; COEF(1+2) & COEF(I1+3)
LDW *Bco++[2], Bi n34 ; COEF(1+4) & COEF(I +5)
LDW *Aco++[2], Al n56 ; COEF(1+6) & COEF(I1+7)
STH Assum * Aout ++[2] . *oPtr++ = (r >> 15)
STH Bssum * Bout ++[2] ; *oPtr++ = (I >> 15)
130 Using the Assembly Optimizer SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Avoiding Memory Bank Conflicts With the Assembly Optimizer

45.2 A Dot Product Example That Avoids Memory Bank Conflicts

The C code in Example 4-7 implements a dot product function. The inner loop is unrolled once to take
advantage of the C6000's ability to operate on two 16-bit data items in a single 32-bit register. LDW
instructions are used to load two consecutive short values. The linear assembly instructions in
Example 4-8 implement the dotp loop kernel. Example 4-9 shows the loop kernel determined by the
assembly optimizer.

For this loop kernel, there are two restrictions associated with the arrays a[] and b[]:
» Because LDW is being used, the arrays must be aligned to start on word boundaries.

+ To avoid a memory bank conflict, one array must start in bank 0 and the other array in bank 2. If they
start in the same bank, then a memory bank conflict occurs every cycle and the loop computes a result
every two cycles instead of every cycle, due to a memory bank stall. For example:

Bank conflict:

MWK 0, A0
[l WK 8, BO
LDW *A0, Al

No bank conflict:

MWK 0, A0

[l WK 4, BO
LDW *A0, Al

|| LDW *BO, Bl

Example 4-7. C Code for Dot Product

int dot(short a[], short b[])

{ int sunD = 0, suml = 0, sum |;
for (I =0; I <100/2; |I+= 2)
{ sunD += af[i] * b[i];
sunl += a[i + 1] * b[i + 1];
ieturn sunD + sumi;
}

Example 4-8. Linear Assembly for Dot Product

_dot: .cproc a, b
.reg sunD, sunmt, |
.reg val 1, val 2, prodl, prod2

MVK 50,i ; | = 100/2
ZERO sunD ; multiply result =0
ZERO sunl ; multiply result =0
| oop: .trip 50

LDW *a++, val 1 ; load a[0-1] bankO
LDW *b++, val 2 ; load b[0-1] bank2
MPY val 1,val 2, prodl ; a[0] * b[O]
MPYH val 1,val 2, prod2 ; a[1l] * b[1]
ADD prodl, sunD, sunD ; sunD += a[0] * b[O]
ADD prod2, sunl, sunl ; sunml += a[1l] * b[1]

[1] ADD 10,0 pol--

[I1] B | oop ; if (!'1) goto |oop
ADD sunD, suml, Ad4 ; conmpute final result

SPRU187T-July 2011 Using the Assembly Optimizer 131

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Avoiding Memory Bank Conflicts With the Assembly Optimizer

13 TEXAS
INSTRUMENTS

www.ti.com

Example 4-8. Linear Assembly for Dot Product (continued)

.return A4

.endproc

Example 4-9. Dot Product Software-Pipelined Kernel

L2: . PI PED LOOP KERNEL

ADD . L2 B7, B4, B4 . |14] <0, 7>
[ADD . L1 A5, A, AD .]15] <0, 7>
[MPY .M2X B6, Ad, BY | 12| <2, 5>
I MPYH .MX B6, A4, A5 13| <2,5>
[l [BO] B .s1 L2 . |18] <5, 2>
[| [BO] ADD .S2 Oxffffffff,BO, BO | 17| <6, 1>
I LDW .D2T2 *B5++ B6 .]10] <7,0>
I LDW .DLTL *A3++ A4)11 <7,0>

|| LDW *BO, Bl

sunD += a[0] *b[0]
sunl += a[1] *b[1]
a[0] * b[O]

a[1] * b[1]

if (') goto |oop
| --

| oad a[0-1] bankO
| oad b[0-1] bank2

It is not always possible to control fully how arrays and other memory objects are aligned. This is
especially true when a pointer is passed into a function and that pointer may have different alignments
each time the function is called. A solution to this problem is to write a dot product routine that cannot
have memory hits. This would eliminate the need for the arrays to use different memory banks.

If the dot product loop kernel is unrolled once, then four LDW instructions execute in the loop kernel.
Assuming that nothing is known about the bank alignment of arrays a and b (except that they are word
aligned), the only safe assumptions that can be made about the array accesses are that a[0-1] cannot
conflict with a[2-3] and that b[0-1] cannot conflict with b[2-3]. Example 4-10 shows the unrolled loop

kernel.

Example 4-10. Dot Product From Example 4-8 Unrolled to Prevent Memory Bank Conflicts

_dotp2: .cproc a_0, b_0
.reg a_4, b_4, sunD, sunml, |
.reg val 1, val 2, prodl, prod2
ADD 4,a 0,a_4
ADD 4,b_0,b_4
MVK 25, ; | =100/ 4
ZERO sunmD ; multiply result =0
ZERO suni ; multiply result =0
.nmptr a_0,a+0, 8
.nmptr a_4,a+4,8
.nmptr b_0, b+0, 8
.nptr b_4,b+4,8

| oop: Ltrip 25
LDW *a_0++[2],vall ; load a[0-1] bankx
LDW *b_0++[2],val2 ; load b[0-1] banky
MPY val 1,val 2, prodl ; a[0] * b[O]
MPYH val 1,val 2, prod2 ; a[1l] * b[1]
ADD prodl, sunD, sunD ; sunD += a[0] * b[O0]
ADD prod2, suml, suml ; suml += a[1] * b[1]
LDW *a_4++[2],vall ; load a[2-3] bankx+2
LDW *b_4++[2],val 2 ; load b[2-3] banky+2
MPY val 1,val 2, prodl ; a[2] * b[2]

132 Using the Assembly Optimizer SPRU187T—-July 2011

Copyright © 2011, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Avoiding Memory Bank Conflicts With the Assembly Optimizer

Example 4-10. Dot Product From Example 4-8 Unrolled to Prevent Memory Bank Conflicts (continued)
MPYH val 1,val 2,prod2 ; a[3] * b[3]

ADD prodl, sunD, sunD ; sunD += a[2] * b[2]
ADD prod2, suml, suml ; suml += a[3] * b[3]

[1] ADD 10,0 ;-

[1] B | oop ; if (10) goto |oop
ADD sunD, suml, Ad4 ; compute final result
.return Ad
. endproc

SPRU187T-July 2011 Using the Assembly Optimizer 133

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Avoiding Memory Bank Conflicts With the Assembly Optimizer www.ti.com

The goal is to find a software pipeline in which the following instructions are in parallel:

LDW *a0++[2] ,val 1 ; load a[0-1] bankx

|| LDW*a2++[2],val2 ; load a[2-3] bankx+2
LDW *b0O++[2] ,val 1 ; load b[0-1] banky

|| LDW*b2++[2],val2 ; load b[2-3] banky+2

Example 4-11. Unrolled Dot Product Kernel From Example 4-9

L2: ; PI PED LOOP KERNEL
[Bl] SuB .82 B1,1, Bl ; <0, 8>

[ADD . L2 B9, B5, B9 ; |21] <0,8> 7~ sunD += a[0] * b[O]

[ADD . L1 A6, A0, AO ;22| <0,8> A~ suml += a[1] * b[1]

[MPY .M2X B8, A4, B9 : |19 <1,6> a[0] * b[O]

[MPYH . MLX B8, Ad, A6 ; 120 <1,6> a[1] * b[1]

|| [BO] B .S1 L2 ;32| <2,4> if (!1) goto loop

|] [B1] LDW .D1IT1 *A3++(8), A4 ;|1 24] <3,2> load a[2-3] bankx+2

|] [Al] LDW .D2T2 *B6++(8), B8 ; |17] <4,0> load a[0-1] bankx

[Al] SUB .81 AL, 1, AL ; <0, 9>

[ADD . L2 B5, B9, B5 ; 128 <0,9> ~ sunD += a[2] * b[2]

[ADD . L1 A6, A0, AO ; 129] <0,9> A~ suml += a[3] * b[3]

[MPY .M2X A4, B7,B5 ;|26 <1,7> a[2] * b[2]

[MPYH . MLX A4, B7, A6 : 27| <1,7> a[3] * b[3]

[| [BO] ADD .S2 -1, BO, BO ;131 <3,3> |I--

|] [Al] LDW .D2T2 *B4++(8), B7 ; |125] <4,1> load b[2-3] banky+2

[| [Al] LDW .DIT1 *A5++(8),Ad ; 18] <4,1> load b[0-1] banky
Without the .mptr directives in Example 4-10, the loads of a[0-1] and b[0-1] are scheduled in parallel, and
the loads of a[2-3] and b[2-3] might be scheduled in parallel. This results in a 50% chance that a memory
conflict will occur on every cycle. However, the loop kernel shown in Example 4-11 can never have a
memory bank conflict.
In Example 4-8, if .mptr directives had been used to specify that a and b point to different bases, then the
assembly optimizer would never find a schedule for a 1-cycle loop kernel, because there would always be
a memory bank conflict. However, it would find a schedule for a 2-cycle loop kernel.

4.5.3 Memory Bank Conflicts for Indexed Pointers

When determining memory bank conflicts for indexed memory accesses, it is sometimes necessary to
specify that a pair of memory accesses always conflict, or that they never conflict. This can be
accomplished by using the .mptr directive with a stride of 0.

A stride of O indicates that there is a constant relation between the memory accesses regardless of the
iteration delta. Essentially, only the base, offset, and width are used by the assembly optimizer to
determine a memory bank conflict. Recall that the stride is optional and defaults to 0.

In Example 4-12, the .mptr directive is used to specify which memory accesses conflict and which never
conflict.

Example 4-12. Using .mptr for Indexed Pointers

.mptr a, RS
.nmptr b, RS
.mptr c, XY
.nptr d, XY+2
LDW *a++[i0a],A0 ; a and b always conflict with each other
LDW *b++[i 0b],BO ;
STH Al, *c++[i 1a] ; ¢ and d never conflict with each other
STH B2, *d++[i 1b]
134 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS

www.ti.com Memory Alias Disambiguation

454

4.6

46.1

4.6.2

4.6.3

Memory Bank Conflict Algorithm

The assembly optimizer uses the following process to determine if two memory access instructions might
have a memory bank conflict:

1. If either access does not have memory bank information, then they do not conflict.

2. If both accesses do not have the same base, then they conflict.

3. The offset, stride, access width, and iteration delta are used to determine if a memory bank conflict will
occur. The assembly optimizer uses a straightforward analysis of the access patterns and determines if
they ever access the same relative bank. The stride and offset values are always expressed in bytes.
The iteration delta is the difference in the loop iterations of the memory references being scheduled in
the software pipeline. For example, given three instructions A, B, C and a software pipeline with a
single-cycle kernel, then A and C have an iteration delta of 2;

A
B A
CcC B

C

Om>

Memory Alias Disambiguation

Memory aliasing occurs when two instructions can access the same memory location. Such memory
references are called ambiguous. Memory alias disambiguation is the process of determining when such
ambiguity is not possible. When you cannot determine whether two memory references are ambiguous,
you presume they are ambiguous. This is the same as saying the two instructions have a memory
dependence between them.

Dependencies between instructions constrain the instruction schedule, including the software pipeline
schedule. In general, the fewer the Dependencies, the greater freedom you have in choosing a schedule
and the better the final schedule performs.

How the Assembly Optimizer Handles Memory References (Default)
The assembly optimizer assumes memory references are aliased, unless it can prove otherwise.

Because alias analysis is very limited in the assembly optimizer, this presumption is often overly
conservative. In such cases, the extra instruction Dependencies, due to the presumed memory aliases,
can cause the assembly optimizer to emit instruction schedules that have less parallelism and do not
perform well. To handle these cases, the assembly optimizer provides one option and two directives.

Using the --no_bad_aliases Option to Handle Memory References

In the assembly optimizer, the --no_bad_aliases option means no memory references ever depend on
each other. The --no_bad_aliases option does not mean the same thing to the C/C++ compiler. The
C/C++ compiler interprets the --no_bad_aliases switch to indicate several specific cases of memory
aliasing are guaranteed not to occur. For more information about using the --no_bad_aliases option, see
Section 3.10.2.

Using the .no_mdep Directive

You can specify the .no_mdep directive anywhere in a .(c)proc function. Whenever it is used, you
guarantee that no memory Dependencies occur within that function.

Memory Dependency Exception

NOTE: For both of these methods, --no_bad_aliases and .no_mdep, the assembly optimizer
recognizes any memory Dependencies you point out with the .mdep directive.

SPRU187T-July 2011 Using the Assembly Optimizer 135
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Memory Alias Disambiguation www.ti.com

4.6.4 Using the .mdep Directive to ldentify Specific Memory Dependencies

You can use the .mdep directive to identify specific memory Dependencies by annotating each memory
reference with a name, and using those names with the .mdep directive to indicate the actual
dependence. Annotating a memory reference requires adding information right next to the memory
reference in the assembly stream. Include the following immediately after a memory reference:

{ memref}

The memref has the same syntax restrictions as any assembly symbol. (For more information about
symbols, refer to the TMS320C6000 Assembly Language Tools User's Guide.) It is in the same name
space as the symbolic registers. You cannot use the same name for a symbolic register and annotating a
memory reference.

Example 4-13. Annotating a Memory Reference

LDW *pl++ {l1d1l}, inpl ;nane nmenory reference "Id1"
;other code ...
STW out p2, *p2++ {st1l} ;nane nenory reference "st1l"

*<The directive to indicate...:

.ndep 1dl, stl <<bol d>>

The directive to indicate a specific memory dependence in the previous example is as follows:
.nmdep 1dl, stl

This means that whenever Id1 accesses memory at location X, some later time in code execution, st1 may
also access location X. This is equivalent to adding a dependence between these two instructions. In
terms of the software pipeline, these two instructions must remain in the same order. The Id1 reference
must always occur before the stl reference; the instructions cannot even be scheduled in parallel.

It is important to note the directional sense of the directive from Id1 to st1. The opposite, from stl to Id1, is
not implied. In terms of the software pipeline, while every Id1 must occur before every stl, it is still legal to
schedule the Id1 from iteration n+1 before the stl from iteration n.

Example 4-14 is a picture of the software pipeline with the instructions from two different iterations in
different columns. In the actual instruction sequence, instructions on the same horizontal line are in
parallel.

Example 4-14. Software Pipeline Using .mdep Id1, stl

iteration n iteration n+l
wowg tary
LDW{ Id1 }
STW{ st1}
STW{ stl }

*<|f that schedule...>

. ndep stl, 1d1

If that schedule does not work because the iteration n st1 might write a value the iteration n+1 Id1 should
read, then you must note a dependence relationship from stl to Id1.

.ndep st1, 1dl

Both directives together force the software pipeline shown in Example 4-15.

136 Using the Assembly Optimizer SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Memory Alias Disambiguation

Example 4-15. Software Pipeline Using .mdep st1, Id1 and .mdep ld1, stl1

iteration n

iteration n+l

LDW{ 1d1}
STW{ st1 }
LDW{ 1d1}
STW{ st1 }
<l ndexed addressing,...>

. ndep 1dl, stl
.ndep stl, Id1l

Indexed addressing, *+base[index], is a good example of an addressing mode where you typically do not
know anything about the relative sequence of the memory accesses, except they sometimes access the

same location. To correctly model this case, you need to note the dependence relation in both directions,
and you need to use both directives.

.ndep 1dl, stl .ndep stl1, Idl

4.6.5 Memory Alias Examples

Following are memory alias examples that use the .mdep and .no_mdep directives.
+ Example 1

The .mdep r1, r2 directive declares that LDW must be before STW. In this case, src and dst might
point to the same array.

fn: . cproc dst, src, cnt
.reg tmp
. no_ndep
. ndep rl, r2
LDW *src{rl}, tnp
STW cnt, *dst{r2}

.return tnmp
. endproc

+ Example 2

Here, .mdep r2, rl indicates that STW must occur before LDW. Since STW is after LDW in the code,
the dependence relation is across loop iterations. The STW instruction writes a value that may be read
by the LDW instruction on the next iteration. In this case, a 6-cycle recurrence is created.

fn: . cproc dst, src, cnt
.reg tmp
. no_ndep
. ndep r2, rl
LOOP: Ltrip 100
LDW *src++{rl}, tnp
STW tnp, *dst++{r2}
[ecnt] SUB cnt, 1, cnt
[ent] B LooP
. endproc

SPRU187T-July 2011 Using the Assembly Optimizer 137

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Memory Alias Disambiguation www.ti.com

Memory Dependence/Bank Conflict

NOTE: Do not confuse memory alias disambiguation with the handling of memory bank conflicts.
These may seem similar because they each deal with memory references and the effect of
those memory references on the instruction schedule. Alias disambiguation is a correctness
issue, bank conflicts are a performance issue. A memory dependence has a much broader
impact on the instruction schedule than a bank conflict. It is best to keep these two topics
separate.

Volatile References
NOTE: For volatile references, use .volatile rather than .mdep.

138 Using the Assembly Optimizer SPRU187T—-July 2011
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Chapter 5
/] —{IE)S(’?SUMENTS SPRU187T—July 2011

Linking C/C++ Code

The C/C++ compiler and assembly language tools provide two methods for linking your programs:

* You can compile individual modules and link them together. This method is especially useful when you
have multiple source files.

* You can compile and link in one step. This method is useful when you have a single source module.

This chapter describes how to invoke the linker with each method. It also discusses special requirements
of linking C/C++ code, including the run-time-support libraries, specifying the type of initialization, and
allocating the program into memory. For a complete description of the linker, see the TMS320C6000
Assembly Language Tools User's Guide.

Topic Page

5.1 Invoking the Linker Through the Compiler (-z Option) ...cccvviiiiiiiiiiiiiececeeea 140

5.2 Linker Code OptiMiZAtiONS ...ucueueeieieie e et e e eaeara s e e e e e e eneneannnes 142

5.3 Controlling the LiNKiNg ProCESSiuiuiiiiiiiiiiiiii et ee e ee e e aenes 142
SPRU187T-July 2011 Linking C/C++ Code 139

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Invoking the Linker Through the Compiler (-z Option) www.ti.com

5.1 Invoking the Linker Through the Compiler (-z Option)

This section explains how to invoke the linker after you have compiled and assembled your programs: as
a separate step or as part of the compile step.

5.1.1 Invoking the Linker Separately

This is the general syntax for linking C/C++ programs as a separate step:

cl6x --run_linker {--rom_model | --ram_model} filenames
[options] [--output_file= name.out] --library= library [Ink.cmd]

cl6x --run_linker
--rom_model | --ram_model

filenames

options

--output_file= name.out
--library= library

Ink.cmd

The command that invokes the linker.

Options that tell the linker to use special conventions defined by the
C/C++ environment. When you use cl6x --run_linker, you must use
--rom_model or --ram_model. The --rom_model option uses
automatic variable initialization at run time; the --ram_model option
uses variable initialization at load time.

Names of object files, linker command files, or archive libraries. The
default extension for all input files is .obj; any other extension must be
explicitly specified. The linker can determine whether the input file is
an object or ASCII file that contains linker commands. The default
output filename is a.out, unless you use the --output_file option to
name the output file.

Options affect how the linker handles your object files. Linker options
can only appear after the --run_linker option on the command line,
but otherwise may be in any order. (Options are discussed in detail in
the TMS320C6000 Assembly Language Tools User's Guide.)

Names the output file.

Identifies the appropriate archive library containing C/C++
run-time-support and floating-point math functions, or linker command
files. If you are linking C/C++ code, you must use a run-time-support
library. You can use the libraries included with the compiler, or you
can create your own run-time-support library. If you have specified a
run-time-support library in a linker command file, you do not need this
parameter. The --library option's short form is -I.

Contains options, filenames, directives, or commands for the linker.

When you specify a library as linker input, the linker includes and links only those library members that
resolve undefined references. The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS directives in the linker command file to customize
the allocation process. For information, see the TMS320C6000 Assembly Language Tools User's Guide.

You can link a C/C++ program consisting of modules progl.obj, prog2.obj, and prog3.obj, with an
executable filename of prog.out with the command:

cl 6x --run_linker --romnodel

--library=rts6200.1ib

progl prog2 prog3 --output_fil e=prog. out

140 Linking C/C++ Code

SPRU187T-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Invoking the Linker Through the Compiler (-z Option)

5.1.2

Invoking the Linker as Part of the Compile Step
This is the general syntax for linking C/C++ programs as part of the compile step:

cléxfilenames [options] --run_linker {--rom_model | --ram_model} filenames
[options] [--output_file= name.out] --library= library [Ink.cmd]

The --run_linker option divides the command line into the compiler options (the options before
--run_linker) and the linker options (the options following --run_linker). The --run_linker option must follow
all source files and compiler options on the command line.

All arguments that follow --run_linker on the command line are passed to the linker. These arguments can
be linker command files, additional object files, linker options, or libraries. These arguments are the same
as described in Section 5.1.1.

All arguments that precede --run_linker on the command line are compiler arguments. These arguments
can be C/C++ source files, assembly files, linear assembly files, or compiler options. These arguments are
described in Section 2.2.

You can compile and link a C/C++ program consisting of modules progl.c, prog2.c, and prog3.c, with an
executable filename of prog.out with the command:

cl 6x progl.c prog2.c prog3.c --run_linker --romnodel --output_file=prog.out --library=rts6200.1ib

NOTE: Order of Processing Arguments in the Linker

The order in which the linker processes arguments is important. The compiler passes
arguments to the linker in the following order:

1. Object filenames from the command line

2. Arguments following the --run_linker option on the command line

3. Arguments following the --run_linker option from the C6X_C_OPTION environment
variable

5.1.3 Disabling the Linker (--compile_only Compiler Option)
You can override the --run_linker option by using the --compile_only compiler option. The -run_linker
option's short form is -z and the --compile_only option's short form is -c.
The --compile_only option is especially helpful if you specify the --run_linker option in the C6X_C_OPTION
environment variable and want to selectively disable linking with the --compile_only option on the
command line.

SPRU187T-July 2011 Linking C/C++ Code 141

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Linker Code Optimizations www.ti.com

5.2

521

522

5.3

Linker Code Optimizations

Generating Function Subsections (--gen_func_subsections Compiler Option)

When the linker places code into an executable file, it allocates all the functions in a single source file as a
group. This means that if any function in a file needs to be linked into an executable, then all the functions
in the file are linked in. This can be undesirable if a file contains many functions and only a few are
required for an executable.

This situation may exist in libraries where a single file contains multiple functions, but the application only
needs a subset of those functions. An example is a library .obj file that contains a signed divide routine
and an unsigned divide routine. If the application requires only signed division, then only the signed divide
routine is required for linking. By default, both the signed and unsigned routines are linked in since they
exist in the same .obj file.

The --gen_func_subsections compiler option remedies this problem by placing each function in a file in its
own subsection. Thus, only the functions that are referenced in the application are linked into the final
executable. This can result in an overall code size reduction.

However, be aware that using the --gen_func_subsections compiler option can result in overall code size
growth if all or nearly all functions are being referenced. This is because any section containing code must
be aligned to a 32-byte boundary to support the C6000 branching mechanism. When the
--gen_func_subsections option is not used, all functions in a source file are usually placed in a common
section which is aligned. When --gen_func_subsections is used, each function defined in a source file is
placed in a unigue section. Each of the unique sections requires alignment. If all the functions in the file
are required for linking, code size may increase due to the additional alignment padding for the individual
subsections.

Thus, the --gen_func_subsections compiler option is advantageous for use with libraries where normally
only a limited number of the functions in a file are used in any one executable.

The alternative to the --gen_func_subsections option is to place each function in its own file.

Conditional Linking

The conditional linking paradigm is different under COFF compared to ELF. In COFF, you must mark a
section with the .clink directive to make it eligible for removal during conditional linking. In ELF, all sections
are considered eligible for removal through conditional linking. Sections are not removed if they are
referenced or if they are marked with the .retain directive.

Under COFF, when you compile with the -gen_func_subsections option, in addition to placing each
function in a separate subsection, the compiler also annotates that subsection with the conditional linking
directive, .clink. This directive marks the section as a candidate to be removed if it is not referenced by
any other section in the program. The compiler does not place a .clink directive in a subsection for a trap
or interrupt function, as these may be needed by a program even though there is no symbolic reference to
them anywhere in the program.

Under COFF, if a section that has been marked for conditional linking is never referenced by any other
section in the program, that section is removed from the program. Under ELF, a section that is never
referenced by any other section in the program is removed from the program automatically, unless it is
marked with .retain. Conditional linking is disabled when performing a partial link or when relocation
information is kept with the output of the link. Conditional linking can also be disabled with the
--disable_clink linker option.

Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special requirements apply when linking
C/C++ programs. You must:

* Include the compiler's run-time-support library

» Specify the type of boot-time initialization

+ Determine how you want to allocate your program into memory

142

Linking C/C++ Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the Linking Process

This section discusses how these factors are controlled and provides an example of the standard default
linker command file.

For more information about how to operate the linker, see the linker description in the TMS320C6000
Assembly Language Tools User's Guide

5.3.1 Including the Run-Time-Support Library

You must include a run-time-support library in the linker process. The following sections describe two
methods for including the run-time-support library.

5.3.1.1 Manual Run-Time-Support Library Selection

You must link all C/C++ programs with a run-time-support library. The library contains standard C/C++
functions as well as functions used by the compiler to manage the C/C++ environment. You must use the
--library linker option to specify which C6000 run-time-support library to use. The --library option also tells
the linker to look at the --search_path options and then the C6X_C_DIR environment variable to find an
archive path or object file. To use the --library linker option, type on the command line:

cl6x --run_linker {--rom_model | --ram_model} filenames --library= libraryname

Generally, you should specify the run-time-support library as the last name on the command line because
the linker searches libraries for unresolved references in the order that files are specified on the command
line. If any object files follow a library, references from those object files to that library are not resolved.
You can use the --reread_libs option to force the linker to reread all libraries until references are resolved.
Whenever you specify a library as linker input, the linker includes and links only those library members
that resolve undefined references.

By default, if a library introduces an unresolved reference and multiple libraries have a definition for it, then
the definition from the same library that introduced the unresolved reference is used. Use the --priority
option if you want the linker to use the definition from the first library on the command line that contains
the definition.

5.3.1.2 Automatic Run-Time-Support Library Selection

If the --rom_maodel or --ram_model option is specified during the linker and the entry point for the program
(normally c_int0O0) is not resolved by any specified object file or library, the linker attempts to automatically
include the best compatible run-time-support library for your program. The chosen run-time-support library
is linked in as if it was specified with the --library option last on the command line. Alternatively, you can
always force the linker to choose an appropriate run-time-support library by specifying “libc.a” as an
argument to the --library option, or when specifying the run-time-support library name explicitly in a linker
command file.

The automatic selection of a run-time-support library can be disabled with the --disable_auto_rts option.

If the --issue_remarks option is specified before the --run_linker option during the linker, a remark is
generated indicating which run-time support library was linked in. If a different run-time-support library is
desired, you must specify the name of the desired run-time-support library using the --library option and in
your linker command files when necessary.

SPRU187T—-July 2011 Linking C/C++ Code 143

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Controlling the Linking Process www.ti.com

Example 5-1. Using the --issue_remarks Option

cl 6x --silicon_version=6400+ --issue_remarks main.c --run_linker --romnode
<Li nki ng>
remark: linking in "libc.a"
remark: linking in "rts64plus.lib" in place of "libc.a"
5.3.2 Run-Time Initialization

5.3.3

C/C++ programs require initialization of the run-time environment before execution of the program itself
may begin. This initialization is performed by a bootstrap routine. This routine is responsible for creating
the stack, initializing global variables, and calling main(). The bootstrap routine should be the entry point
for the program, and it typically should be the RESET interrupt handler. The bootstrap routine is
responsible for the following tasks:

Set up the stack by initializing SP

Set up the data page pointer DP (for architectures that have one)

Set configuration registers

Process the .cinit table to autoinitialize global variables (when using the --rom_model option)
Process the .pinit table to construct global C++ objects.

Call main with appropriate arguments

Call exit when main returns

No ok owDdhPE

When you compile a C program and use --rom_model or --ram_model, the linker looks for a bootstrap
routine named _c_int00. The run-time support library provides a sample _c_int00 in boot.obj, which
performs the required tasks. If you use the run-time support's bootstrap routine, you should set _c_int00
as the entry point.

A sample bootstrap routine is _c_int00, provided in boot.obj in the run-time support object libraries. The
entry point is usually set to the starting address of the bootstrap routine.

NOTE: The _c_int00 Symbol

If you use the --ram_model or --rom_model link option, _c_int00 is automatically defined as
the entry point for the program.

Global Object Constructors

Global C++ variables that have constructors and destructors require their constructors to be called during
program initialization and their destructors to be called during program termination. The C++ compiler
produces a table of constructors to be called at startup.

Constructors for global objects from a single module are invoked in the order declared in the source code,
but the relative order of objects from different object files is unspecified.

Global constructors are called after initialization of other global variables and before main() is called.
Global destructors are invoked during exit(), similar to functions registered through atexit().

Section 7.8.6 discusses the format of the global constructor table for COFFABI mode and Section 7.8.6 for
EABI mode..

144

Linking C/C++ Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Controlling the Linking Process

5.3.4 Specifying the Type of Global Variable Initialization

The C/C++ compiler produces data tables for initializing global variables. Section 7.8.5 discusses the
format of these initialization tables for COFFABI. Section 7.8.4.4 discusses the format of these initialization
tables for EABI. The initialization tables are used in one of the following ways:

» Global variables are initialized at run time. Use the --rom_model linker option (see Section 7.8.2).
* Global variables are initialized at load time. Use the --ram_model linker option (see Section 7.8.3).

When you link a C/C++ program, you must use either the --rom_model or --ram_model option. These
options tell the linker to select initialization at run time or load time.

When you compile and link programs, the --rom_model option is the default. If used, the --rom_model
option must follow the --run_linker option (see Section 5.1). The following list outlines the linking
conventions for COFFABI used with --rom_model or --ram_model:

» The symbol _c_int00 is defined as the program entry point; it identifies the beginning of the C/C++ boot
routine in boot.obj. When you use --rom_model or --ram_model, _c¢_int00 is automatically referenced,
ensuring that boot.obj is automatically linked in from the run-time-support library.

« The initialization output section is padded with a termination record so that the loader (load-time
initialization) or the boot routine (run-time initialization) knows when to stop reading the initialization
tables.

* When initializing at load time (the --ram_model option), the following occur:

— The linker sets the initialization table symbol to -1. This indicates that the initialization tables are not
in memory, so no initialization is performed at run time.

— The STYP_COPY flag is set in the initialization table section header. STYP_COPY is the special
attribute that tells the loader to perform autoinitialization directly and not to load the initialization
table into memory. The linker does not allocate space in memory for the initialization table.

* When autoinitializing at run time (--rom_model option), the linker defines the initialization table symbol
as the starting address of the initialization table. The boot routine uses this symbol as the starting point
for autoinitialization.

For details on linking conventions for EABI used with --rom_model and --ram_model, see Section 7.8.4.3
and Section 7.8.4.5, respectively.

5.3.5 Specifying Where to Allocate Sections in Memory
The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated
in memory in a variety of ways to conform to a variety of system configurations.
The compiler creates two basic kinds of sections: initialized and uninitialized. Table 5-1 summarizes the
initialized sections created under the COFF ABI mode. Table 5-2 summarizes the initialized sections
created under the EABI mode. Table 5-3 summarizes the uninitialized sections. Be aware that the COFF
ABI .cinit and .pinit (.init_array in EABI) tables have different formats in EABI.
Table 5-1. Initialized Sections Created by the Compiler for COFFABI
Name Contents
.args Command argument for host-based loader; read-only (see the --arg_size option)
.cinit Tables for explicitly initialized global and static variables
.const Global and static const variables that are explicitly initialized and contain string
literals
.pinit Table of constructors to be called at startup
.ppdata Data tables for compiler-based profiling (see the --gen_profile_info option)
.ppinfo Correlation tables for compiler-based profiling (see the --gen_profile_info option)
.switch Jump tables for large switch statements
text Executable code and constants
SPRU187T-July 2011 Linking C/C++ Code 145

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Controlling the Linking Process

13 TEXAS
INSTRUMENTS

www.ti.com

Table 5-2. Initialized Sections Created by the Compiler for EABI

Name Contents

.args Command argument for host-based loader; read-only (see the --arg_size option)

.binit Boot time copy tables (See the TMS320C6000 Assembly Language Tools User's
Guide for information on BINIT in linker command files.)

.cinit In EABI mode, the compiler does not generate a .cinit section. However, when the
--rom_mode linker option is specified, the linker creates this section, which contains
tables for explicitly initialized global and static variables.

.const Far, const global and static variables, and string constants

.c6xabi.exidx Index table for exception handling; read-only (see --exceptions option)

.c6xabi.extab
fardata
.init_array
.name.load

.neardata
.ppdata
.ppinfo
.rodata
.switch
text

Unwinded instructions for exception handling; read-only (see --exceptions option)
Far non-const global and static variables that are explicitly initialized
Table of constructors to be called at startup

Compressed image of section name; read-only (See the TMS320C6000 Assembly
Language Tools User's Guide for information on copy tables.)

Near non-const global and static variables that are explicitly initialized

Data tables for compiler-based profiling (see the --gen_profile_info option)
Correlation tables for compiler-based profiling (see the --gen_profile_info option)
Global and static variables that have near and const qualifiers

Jump tables for large switch statements

Executable code and constants

Table 5-3. Uninitialized Sections Created by the Compiler for Both ABIs

Name Contents

.bss Global and static variables

far Global and static variables declared far
.stack Stack

.sysmem Memory for malloc functions (heap)

When you link your program, you must specify where to allocate the sections in memory. In general,
initialized sections are linked into ROM or RAM; uninitialized sections are linked into RAM. With the
exception of code sections, the initialized and uninitialized sections created by the compiler cannot be
allocated into internal program memory. See Section 7.1.1 for a complete description of how the compiler

uses these sections.

The linker provides MEMORY and SECTIONS directives for allocating sections. For more information
about allocating sections into memory, see the TMS320C6000 Assembly Language Tools User's Guide.

146

Linking C/C++ Code

SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the Linking Process

5.3.6 A Sample Linker Command File

Example 5-2 shows a typical linker command file that links a C program. The command file in this
example is named Ink.cmd and lists several linker options:

--rom_model Tells the linker to use autoinitialization at run time.

--heap_size Tells the linker to set the C heap size at 0x2000 bytes.
--stack_size Tells the linker to set the stack size to 0x0100 bytes.

--library Tells the linker to use an archive library file, rts6200.lib, for input.

To link the program, use the following syntax:

cléx --run_linker object_file(s) --output_file= outfile --map_file= mapfile Ink.cmd

The MEMORY and possibly the SECTIONS directives, might require modification to work with your
system. See the TMS320C6000 Assembly Language Tools User's Guide for more information on these
directives.

Example 5-2. Linker Command File

--rom_nodel

- - heap_si ze=0x2000
--stack_si ze=0x0100
--library=rts6200.1ib

MEMORY
{
VECS: o = 0x00000000 | = 0x000000400 /* reset & interrupt vectors */
PVEM o = 0x00000400 | = OxO00000FC00 /* intended for initialization */
BVEM o = 0x80000000 | = 0x000010000 /* .bss, .sysnmem .stack, .cinit */
}
SECTI ONS
{
vectors > VECS
.text > PVEM
.data > BVEM
. stack > BVEM
. bss > BMVEM
. sysmem > BVEM
.cinit > BVEM
. const > BVEM
.cio > BVEM
.far > BVEM
}
SPRU187T-July 2011 Linking C/C++ Code 147

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

148 Linking C/C++ Code SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

. Chapter 6
I3 TEXAS SPRU187T—July 2011

INSTRUMENTS
TMS320C6000C/C++ Language Implementation

The C/C++ compiler supports the C/C++ language standard that was developed by a committee of the
American National Standards Institute (ANSI) and subsequently adopted by the International Standards
Organization (1S0).

The C++ language supported by the C6000 is defined by the ANSI/ISO/IEC 14882:1998 standard with
certain exceptions.

Topic Page
6.1 Characteristics of TMS320C6000 Couiuiuiuiinieieaeinaeaeaeaeaeeaeaeanreaeaeaeanaaeaeees 150
6.2 Characteristics of TMS320C6000 CH+ ..uuiuiueueieineneeaeinaeeae e aeeaeaeanaeaeaeaeaneeaeees 150
6.3 USING MISRA-C:2004eueueuiuiueneneeie et eeeeaeaaa s e e e e e s eaeasa s e saae e eenenenanannnnen 151
L I - | = B 157/ o 1= 152
LTS T (=1 AT (0 K= 153
(SRS TN O 5 o = qo =T o 4 Lo o TN = =2 o |11 o Yo [PP 157
6.7 Register Variables and Parameterscocoiiuieieieieieiiiiieeieieies e ecreaenenaaraanes 158
6.8 The asSm STAtEMENT ...ttt et e et e e e et e e e et e aeneeeaeanns 158
6.9 Pragma DilrECIIVES ittt ittt ettt a et e ettt e e e e et a e e aas 159
6.10 The Pragma OpPeratirc.ceeieieiuieieeeiueeeaatstee e ataeeaeatesaaeeaeasanaeneanesseneneanans 175
6.11 Application Binary INTErfaCeoeiieiii i et ae e eenes 176
6.12 Object File Symbol Naming Conventions (LINKNames)cccvveieiiiiiiieeninininnenenes 176
6.13 Initializing Static and Global Variables in COFF ABI Modeccccoviiiiiiiiiinininenene. 177
6.14 Changing the ANSI/ISO C Language MOAEc.ouiuiiiininiieiiie et eeeeeaeaeeenes 178
6.15 GNU Language EXLENSIONS .cuiuiuiiieititiiietiaieeetetiasaeae et easaeneaeataasaeaeaeataneeneanaes 180

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 149

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
Characteristics of TMS320C6000 C www.ti.com
6.1 Characteristics of TMS320C6000 C

The compiler supports the C language as defined by ISO/IEC 9899:1990, which is equivalent to American

National Standard for Information Systems-Programming Language C X3.159-1989 standard, commonly

referred to as C89, published by the American National Standards Institute. The compiler can also accept

many of the language extensions found in the GNU C compiler (see Section 6.15). The compiler does not
support C99.

The ANSI/ISO standard identifies some features of the C language that are affected by characteristics of

the target processor, run-time environment, or host environment. For reasons of efficiency or practicality,

this set of features can differ among standard compilers.

Unsupported features of the C library are:

* The run-time library has minimal support for wide and multi-byte characters. The type wchar_t is
implemented as int. The wide character set is equivalent to the set of values of type char. The library
includes the header files <wchar.h> and <wctype.h>, but does not include all the functions specified in
the standard. So-called multi-byte characters are limited to single characters. There are no shift states.
The mapping between multi-byte characters and wide characters is simple equivalence; that is, each
wide character maps to and from exactly a single multi-byte character having the same value.

* The run-time library includes the header file <locale.h>, but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is
hard-coded to the behavior of the C locale, and attempting to install a different locale by way of a call
to setlocale() will return NULL.

6.2 Characteristics of TMS320C6000 C++

The C6000 compiler supports C++ as defined in the ANSI/ISO/IEC 14882:1998 standard, including these

features:

+ Complete C++ standard library support, with exceptions noted below.

+ Templates

» Exceptions, which are enabled with the --exceptions option; see Section 6.6.

* Run-time type information (RTTI), which can be enabled with the --rtti compiler option.

The exceptions to the standard are as follows:

* The compiler does not support embedded C++ run-time-support libraries.

* The library supports wide chars, in that template functions and classes that are defined for char are
also available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf and
S0 on (corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no
low-level file I/O for wide chars. Also, the C library interface to wide char support (through the C++
headers <cwchar> and <cwctype>) is limited as described above in the C library.

» For COFF ABI only: If the definition of an inline function contains a static variable, and it appears in
multiple compilation units (usually because it's a member function of a class defined in a header file),
the compiler generates multiple copies of the static variable rather than resolving them to a single
definition. The compiler emits a warning (#1369) in such cases.

* No support for bad_cast or bad_type_id is included in the typeinfo header.

» Two-phase name binding in templates, as described in [tesp.res] and [temp.dep] of the standard, is not
implemented.

* The export keyword for templates is not implemented.

» A typedef of a function type cannot include member function cv-qualifiers.

+ A partial specialization of a class member template cannot be added outside of the class definition.

150 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Using MISRA-C:2004

6.3 Using MISRA-C:2004

You can alter your code to work with the MISRA-C:2004 rules. The following enable/disable the rules:
* The --check_misra option enables checking of the specified MISRA-C:2004 rules.

* The CHECK_MISRA pragma enables/disables MISRA-C:2004 rules at the source level. This pragma is
equivalent to using the --check_misra option. See Section 6.9.1.

* RESET_MISRA pragma resets the specified MISRA-C:2004 rules to the state they were before any
CHECK_MISRA pragmas were processed. See Section 6.9.23.

The syntax of the option and pragmas are:

--check_misra={all|required|advisory|none|rulespec}
#pragma CHECK_MISRA ("{all[required|advisory|none|rulespec}");
#pragma RESET_MISRA ("{all[required|advisory|rulespec}");

The rulespec parameter is a comma-separated list of these specifiers:

[-]X Enable (or disable) all rules in topic X.
[-1X-z Enable (or disable) all rules in topics X through Z.
[[IX.A Enable (or disable) rule A in topic X.

[(]X.A-C Enable (or disable) rules A through C in topic X.

Example: --check _misra=1-5,-1.1,7.2-4

* Checks topics 1 through 5

« Disables rule 1.1 (all other rules from topic 1 remain enabled)
* Checks rules 2 through 4 in topic 7

Two options control the severity of certain MISRA-C:2004 rules:
* The --misra_required option sets the diagnostic severity for required MISRA-C:2004 rules.
* The --misra_advisory option sets the diagnostic severity for advisory MISRA-C:2004 rules.

The syntax for these options is:

--misra_advisory={error|warning|remark|suppress}
--misra_required={error|warning|remark|suppress}

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 151

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Data Types

13 TEXAS
INSTRUMENTS

www.ti.com

6.4

Data Types

Table 6-1 lists the size, representation, and range of each scalar data type for the C6000 compiler for
COFF ABI. See Table 6-2 for the EABI data types. Many of the range values are available as standard

macros in the header file limits.h.

Table 6-1. TMS320C6000 C/C++ COFF ABI Data Types

Range

Type Size Representation Minimum Maximum

char, signed char 8 bits ASCII -128 127

unsigned char 8 bits ASCII 0 255

short 16 bits 2s complement -32 768 32767

unsigned short 16 bits Binary 0 65 535

int, signed int 32 bits 2s complement -2 147 483 648 2 147 483 647
unsigned int 32 bits Binary 0 4 294 967 295
long, signed long 40 bits 2s complement -549 755 813 888 549 755 813 887
unsigned long 40 bits Binary 0 1099 511 627 775
__int40_t 40 bits 2s complement -549 755 813 888 549 755 813 887
unsigned __int40_t 40 bits Binary 0 1099 511 627 775
long long, signed long long 64 bits 2s complement -9 223 372 036 854 775 808 9 223 372 036 854 775 807
unsigned long long 64 bits Binary 0 18 446 744 073 709 551 615
enum 32 bits 2s complement -2 147 483 648 2 147 483 647
float 32 bits IEEE 32-bit 1.175 494e-380 3.40 282 346e+38
double 64 bits IEEE 64-bit 2.22 507 385e-308% 1.79 769 313e+308
long double 64 bits IEEE 64-bit 2.22 507 385e-308% 1.79 769 313e+308
pointers, references, pointer to 32 bits Binary 0 OXFFFFFFFF

data members
@ Figures are minimum precision.

Table 6-2. TMS320C6000 C/C++ EABI Data Types
Range

Type Size Representation Minimum Maximum

char, signed char 8 bits ASCII -128 127

unsigned char 8 bits ASCII 0 255

short 16 bits 2s complement -32 768 32 767

unsigned short 16 bits Binary 0 65 535

int, signed int 32 bits 2s complement -2 147 483 648 2 147 483 647
unsigned int 32 bits Binary 0 4 294 967 295
long, signed long 32 bits 2s complement -2 147 483 648 2 147 483 647
unsigned long 32 bits Binary 0 4 294 967 295
__int40_t 40 bits 2s complement -549 755 813 888 549 755 813 887
unsigned __int40_t 40 bits Binary 0 1099 511 627 775
long long, signed long long 64 bits 2s complement -9 223 372 036 854 775 808 9 223 372 036 854 775 807
unsigned long long 64 bits Binary 0 18 446 744 073 709 551 615
enum 32 bits 2s complement -2 147 483 648 2 147 483 647

float 32 bits IEEE 32-bit 1.175 494e-38@ 3.40 282 346e+38
double 64 bits IEEE 64-bit 2.22 507 385e-308™ 1.79 769 313e+308
long double 64 bits IEEE 64-bit 2.22 507 385e-308™ 1.79 769 313e+308
pointers, references, pointer to 32 bits Binary 0 OXFFFFFFFF

data members

@ Figures are minimum precision.

152 TMS320C6000C/C++ Language Implementation

Copyright © 2011, Texas Instruments Incorporated

SPRU187T-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS

INSTRUMENTS

www.ti.com Keywords

6.5

6.5.1

6.5.2

Keywords

The C6000 C/C++ compiler supports the standard const, register, restrict, and volatile keywords. In
addition, the C/C++ compiler extends the C/C++ language through the support of the cregister, interrupt,
near, and far keywords.

The const Keyword

The C/C++ compiler supports the ANSI/ISO standard keyword const. This keyword gives you greater
optimization and control over allocation of storage for certain data objects. You can apply the const
qualifier to the definition of any variable or array to ensure that its value is not altered.

If you define an object as far const, the .const section allocates storage for the object. The const data
storage allocation rule has two exceptions:

« If the keyword volatile is also specified in the definition of an object (for example, volatile const int x).
Volatile keywords are assumed to be allocated to RAM. (The program does not modify a const volatile
object, but something external to the program might.)

« If the object has automatic storage (allocated on the stack).
In both cases, the storage for the object is the same as if the const keyword were not used.

The placement of the const keyword within a definition is important. For example, the first statement below
defines a constant pointer p to a variable int. The second statement defines a variable pointer g to a
constant int:
int * const p
const int * g

&x;
&x;

Using the const keyword, you can define large constant tables and allocate them into system ROM. For
example, to allocate a ROM table, you could use the following definition:

far const int digits[] ={0,1,2,3,4,5,6,7,8,9};

The cregister Keyword

The compiler extends the C/C++ language by adding the cregister keyword to allow high level language
access to control registers.

When you use the cregister keyword on an object, the compiler compares the name of the object to a list
of standard control registers for the C6000 (see Table 6-3). If the name matches, the compiler generates
the code to reference the control register. If the name does not match, the compiler issues an error.

Table 6-3. Valid Control Registers

Register Description

AMR Addressing mode register

CSR Control status register

DESR (C6700+ only) dMAX event status register

DETR (C6700+ only) dMAX event trigger register

DNUM (C6400+ only) DSP core number register

ECR (C6400+ only) Exception clear register

EFR (C6400+ only) Exception flag register

FADCR (C6700 only) Floating-point adder configuration register
FAUCR (C6700 only) Floating-point auxiliary configuration register
FMCR (C6700 only) Floating-point multiplier configuration register
GFPGFR (C6400 only) Galois field polynomial generator function register
GPLYA (C6400+ only) GMPY A-side polynomial register

CPLYB (C6400+ only) GMPY B-side polynomial register

ICR Interrupt clear register

IER Interrupt enable register

IERR (C6400+ only) Internal exception report register

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 153
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Keywords

13 TEXAS
INSTRUMENTS

www.ti.com

Table 6-3. Valid Control Registers (continued)

Register Description

IFR Interrupt flag register. (IFR is read only.)

ILC (C6400+ only) Inner loop count register

IRP Interrupt return pointer

ISR Interrupt set register

ISTP Interrupt service table pointer

ITSR (C6400+ only) Interrupt task state register

NRP Nonmaskable interrupt return pointer

NTSR (C6400+ only) NMl/exception task state register
REP (C6400+ only) Restricted entry point address register
RILC (C6400+ only) Reload inner loop count register

SSR (C6400+ only) Saturation status register

TSCH (C6400+ only) Time-stamp counter (high 32) register
TSCL (C6400+ only) Time-stamp counter (low 32) register
TSR (C6400+ only) Task state register

The cregister keyword can be used only in file scope. The cregister keyword is not allowed on any
declaration within the boundaries of a function. It can only be used on objects of type integer or pointer.
The cregister keyword is not allowed on objects of any floating-point type or on any structure or union

objects.

The cregister keyword does not imply that the object is volatile. If the control register being referenced is
volatile (that is, can be modified by some external control), then the object must be declared with the
volatile keyword also.

To use the control registers in Table 6-3, you must declare each register as follows. The c6x.h include file
defines all the control registers through this syntax:

extern cregister volatile unsigned int register ;

Once you have declared the register, you can use the register name directly. See the TMS320C62x DSP
CPU and Instruction Set Reference Guide, TMS320C64x/C64x+ DSP CPU and Instruction Set Reference
Guide, the TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide, or TMS320C66x+ DSP
CPU and Instruction Set Reference Guide for detailed information on the control registers.

See Example 6-1 for an example that declares and uses control registers.

Example 6-1. Define and Use Control Registers

extern cregister
extern cregister
extern cregister
extern cregister
extern cregister
extern cregister
extern cregister
extern cregister
extern cregister

mai n()
{

printf("AWR =
}

vol atil e unsigned
vol atil e unsigned
vol atil e unsigned
vol atil e unsigned
vol atil e unsigned
vol atil e unsigned
vol atil e unsigned
vol atil e unsigned
vol atil e unsigned

w\n", AWR);

int
int
int
int
int
int
int
int
int

AVR,
CSR,;

| FR,

I SR;

I CR;

| ER;
FADCR;
FAUCR;
FMCR;

154 TMS320C6000C/C++ Language Implementation

Copyright © 2011, Texas Instruments Incorporated

SPRU187T-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Keywords

6.5.3

6.5.4

6.5.4.

The interrupt Keyword

The compiler extends the C/C++ language by adding the interrupt keyword, which specifies that a function
is treated as an interrupt function.

Functions that handle interrupts follow special register-saving rules and a special return sequence. The
implementation stresses safety. The interrupt routine does not assume that the C run-time conventions for
the various CPU register and status bits are in effect; instead, it re-establishes any values assumed by the
run-time environment. When C/C++ code is interrupted, the interrupt routine must preserve the contents of
all machine registers that are used by the routine or by any function called by the routine. When you use
the interrupt keyword with the definition of the function, the compiler generates register saves based on
the rules for interrupt functions and the special return sequence for interrupts.

You can only use the interrupt keyword with a function that is defined to return void and that has no
parameters. The body of the interrupt function can have local variables and is free to use the stack or
global variables. For example:

interrupt void int_handler()

{

unsi gned int flags;

}

The name c_int00 is the C/C++ entry point. This name is reserved for the system reset interrupt. This
special interrupt routine initializes the system and calls the function main. Because it has no caller, c¢_int00
does not save any registers.

Use the alternate keyword, __interrupt, if you are writing code for strict ANSI/ISO mode (using the
--strict_ansi compiler option).

HWI Objects and the interrupt Keyword

NOTE: The interrupt keyword must not be used when BIOS HWI objects are used in conjunction
with C functions. The HWI_enter/HWI_exit macros and the HWI dispatcher contain this
functionality, and the use of the C modifier can cause negative results.

The near and far Keywords

The C6000 C/C++ compiler extends the C/C++ language with the near and far keywords to specify how
global and static variables are accessed and how functions are called.

Syntactically, the near and far keywords are treated as storage class modifiers. They can appear before,
after, or in between the storage class specifiers and types. With the exception of near and far, two storage
class modifiers cannot be used together in a single declaration. The following examples are legal
combinations of near and far with other storage class modifiers:

far static int x;

static near int x;

static int far x;

far int foo();

static far int foo();

1 near and far Data Objects
Global and static data objects can be accessed in the following two ways:

near keyword The compiler assumes that the data item can be accessed relative to the data page

pointer. For example:
LDW *+dp(_address), a0

far keyword The compiler cannot access the data item via the DP. This can be required if the
total amount of program data is larger than the offset allowed (32K) from the DP.
For example:

MVKL _address, al MVKH _address, al LDW *al, a0

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 155

Submit

Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Keywords www.ti.com

Once a variable has been defined to be far, all external references to this variable in other C files or
headers must also contain the far keyword. This is also true of the near keyword. However, you will get
compiler or linker errors when the far keyword is not used everywhere. Not using the near keyword
everywhere only leads to slower data access times.

If you use the DATA_SECTION pragma, the object is indicated as a far variable, and this cannot be
overridden. If you reference this object in another file, then you need to use extern far when declaring this
object in the other source file. This ensures access to the variable, since the variable might not be in the
.bss section. For details, see Section 6.9.6.

NOTE: Defining Global Variables in Assembly Code

If you also define a global variable in assembly code with the .usect directive (where the
variable is not assigned in the .bss section) or you allocate a variable into separate section
using a #pragma DATA_SECTION directive; and you want to reference that variable in C
code, you must declare the variable as extern far. This ensures the compiler does not try to
generate an illegal access of the variable by way of the data page pointer.

When data objects do not have the near or far keyword specified, the compiler will use far accesses to
aggregate data and near accesses to non-aggregate data. For more information on the data memory
model and ways to control accesses to data, see Section 7.1.5.1.

6.5.4.2 Near and far Function Calls

6.5.5

Function calls can be invoked in one of two ways:

near keyword The compiler assumes that destination of the call is within £ 1 M word of the caller.
Here the compiler uses the PC-relative branch instruction.
B _func
far keyword The compiler is told by you that the call is not within £ 1 M word.

MVKL _func, al
MVKH _func, al
B _func

By default, the compiler generates small-memory model code, which means that every function call is
handled as if it were declared near, unless it is actually declared far.

For more information on function calls, see Section 7.1.6.

The restrict Keyword

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or array with
the restrict keyword. The restrict keyword is a type qualifier that can be applied to pointers, references,
and arrays. Its use represents a guarantee by you, the programmer, that within the scope of the pointer
declaration the object pointed to can be accessed only by that pointer. Any violation of this guarantee
renders the program undefined. This practice helps the compiler optimize certain sections of code
because aliasing information can be more easily determined.

In Example 6-2, the restrict keyword is used to tell the compiler that the function funcl is never called with
the pointers a and b pointing to objects that overlap in memory. You are promising that accesses through
a and b will never conflict; therefore, a write through one pointer cannot affect a read from any other
pointers. The precise semantics of the restrict keyword are described in the 1999 version of the ANSI/ISO
C Standard.

156

TMS320C6000C/C++ Language Implementation SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

www.ti.com

TEXAS
INSTRUMENTS

C++ Exception Handling

Example 6-2. Use of the restrict Type Qualifier With Pointers

void funcl(int * restrict a, int * restrict b)

{
}

/* funcl's code here */

Example 6-3 illustrates using the restrict keyword when passing arrays to a function. Here, the arrays ¢
and d should not overlap, nor should ¢ and d point to the same array.

Example 6-3. Use of the restrict Type Qualifier With Arrays

void func2(int c[restrict], int d[restrict])

{

}

int i;

for(i = 0; i < 64; i++)

{

}

c[i] +=d[i];
dli] += 1;

6.5.6 The volatile Keyword

6.6

The compiler analyzes data flow to avoid memory accesses whenever possible. If you have code that

depends on memory accesses exactly as written in the C/C++ code, you must use the volatile keyword to
identify these accesses. A variable qualified with a volatile keyword is allocated to an uninitialized section

(as opposed to a register). The compiler does not optimize out any references to volatile variables.

In the following example, the loop intends to wait for a location to be read as OxFF:

unsigned int *ctrl;

while (*ctrl !=0xFF);

However, in this example, *ctrl is a loop-invariant expression, so the loop is optimized down to a
single-memory read. To get the desired result, define *ctrl as:

vol atile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.
The --interrupt_threshold=1 option should be used when compiling with volatiles.

C++ Exception Handling

The compiler supports all the C++ exception handling features as defined by the ANSI/ISO 14882 C++
Standard. More details are discussed in The C++ Programming Language, Third Edition by Bjarne
Stroustrup.

The compiler --exceptions option enables exception handling. The compiler’s default is no exception
handling support.

For exceptions to work correctly, all C++ files in the application must be compiled with the --exceptions
option, regardless of whether exceptions occur in a particular file. Mixing exception-enabled object files
and libraries with object files and libraries that do not have exceptions enabled can lead to undefined
behavior. Also, when using --exceptions, you need to link with run-time-support libraries whose name
contains _eh. These libraries contain functions that implement exception handling.

Using --exceptions causes

SPRU187T-July 2011 TMS320C6000C/C++ Language Implementation
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

157

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Register Variables and Parameters www.ti.com

Using --exceptions causes the compiler to insert exception handling code. This code will increase the
code size of the program, particularly for COFF ABI. In addition, COFF ABI will increase the execution
time, even if an exception is never thrown. EABI will not increase code size as much, and has a minimal
execution time cost if exceptions are never thrown, but will slightly increase the data size for the
exception-handling tables.

See Section 8.1 for details on the run-time libraries.

6.7 Register Variables and Parameters

The C/C++ compiler treats register variables (variables defined with the register keyword) differently,
depending on whether you use the --opt_level (-O) option.

+ Compiling with optimization

The compiler ignores any register definitions and allocates registers to variables and temporary values
by using an algorithm that makes the most efficient use of registers.

* Compiling without optimization
If you use the register keyword, you can suggest variables as candidates for allocation into registers.

The compiler uses the same set of registers for allocating temporary expression results as it uses for
allocating register variables.

The compiler attempts to honor all register definitions. If the compiler runs out of appropriate registers, it
frees a register by moving its contents to memory. If you define too many objects as register variables,
you limit the number of registers the compiler has for temporary expression results. This limit causes
excessive movement of register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined as a register variable. The
register designator is ignored for objects of other types, such as arrays.

The register storage class is meaningful for parameters as well as local variables. Normally, in a function,
some of the parameters are copied to a location on the stack where they are referenced during the
function body. The compiler copies a register parameter to a register instead of the stack, which speeds
access to the parameter within the function.

For more information about register conventions, see Section 7.3.

6.8 The asm Statement

The C/C++ compiler can embed assembly language instructions or directives directly into the assembly
language output of the compiler. This capability is an extension to the C/C++ language—the asm
statement. The asm (or __asm) statement provides access to hardware features that C/C++ cannot
provide. The asm statement is syntactically like a call to a function named asm, with one string constant
argument;

‘ asm(" assembler text ");

The compiler copies the argument string directly into your output file. The assembler text must be
enclosed in double quotes. All the usual character string escape codes retain their definitions. For
example, you can insert a .byte directive that contains quotes as follows:

asn("STR . byte \"abc\"");

The inserted code must be a legal assembly language statement. Like all assembly language statements,
the line of code inside the quotes must begin with a label, a blank, a tab, or a comment (asterisk or
semicolon). The compiler performs no checking on the string; if there is an error, the assembler detects it.
For more information about the assembly language statements, see the TMS320C6000 Assembly
Language Tools User's Guide.

The asm statements do not follow the syntactic restrictions of normal C/C++ statements. Each can appear
as a statement or a declaration, even outside of blocks. This is useful for inserting directives at the very
beginning of a compiled module.

158 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Pragma Directives

Use the alternate statement __asm("assembler text") if you are writing code for strict ANSI/ISO C mode

(using the --strict_ansi option).

NOTE: Avoid Disrupting the C/C++ Environment With asm Statements

Be careful not to disrupt the C/C++ environment with asm statements. The compiler does not
check the inserted instructions. Inserting jumps and labels into C/C++ code can cause
unpredictable results in variables manipulated in or around the inserted code. Directives that
change sections or otherwise affect the assembly environment can also be troublesome.

Be especially careful when you use optimization with asm statements. Although the compiler
cannot remove asm statements, it can significantly rearrange the code order near them and

cause undesired results.

6.9 Pragma Directives

Pragma directives tell the compiler how to treat a certain function, object, or section of code. The C6000

C/C++ compiler supports the following pragmas:

.

CHECK_MISRA
CLINK
CODE_SECTION
DATA_ALIGN
DATA_MEM_BANK
DATA_SECTION

DIAG_SUPPRESS, DIAG_REMARK, DIAG_WARNING, DIAG_ERROR, and DIAG_DEFAULT

FUNC_ALWAYS_INLINE
FUNC_CANNOT_INLINE
FUNC_EXT_CALLED
FUNC_INTERRUPT_THRESHOLD
FUNC_IS_PURE
FUNC_IS_SYSTEM
FUNC_NEVER_RETURNS
FUNC_NO_GLOBAL_ASG
FUNC_NO_IND_ASG
FUNCTION_OPTIONS
INTERRUPT
MUST_ITERATE
NMI_INTERRUPT
NO_HOOKS
PROB_ITERATE
RESET_MISRA

RETAIN
SET_CODE_SECTION
SET_DATA_SECTION
STRUCT_ALIGN

UNROLL

SPRU187T-July 2011
Submit Documentation Feedback

TMS320C6000C/C++ Language Implementation

Copyright © 2011, Texas Instruments Incorporated

159

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

Most of these pragmas apply to functions. Except for the DATA_MEM_BANK pragma, the arguments func
and symbol cannot be defined or declared inside the body of a function. You must specify the pragma
outside the body of a function; and the pragma specification must occur before any declaration, definition,
or reference to the func or symbol argument. If you do not follow these rules, the compiler issues a
warning and may ignore the pragma.

For the pragmas that apply to functions or symbols (except CLINK and RETAIN), the syntax for the
pragmas differs between C and C++. In C, you must supply the name of the object or function to which
you are applying the pragma as the first argument. In C++, the name is omitted; the pragma applies to the
declaration of the object or function that follows it.

6.9.1 The CHECK_MISRA Pragma

The CHECK_MISRA pragma enables/disables MISRA-C:2004 rules at the source level. This pragma is
equivalent to using the --check_misra option.

The syntax of the pragma in C is:

#pragma CHECK_MISRA (" {all[required|advisory|none|rulespec} ");

The rulespec parameter is a comma-separated list of specifiers. See Section 6.3 for details.
The RESET_MISRA pragma can be used to reset any CHECK_MISRA pragmas; see Section 6.9.23.

6.9.2 The CLINK Pragma

The CLINK pragma can be applied to a code or data symbol. It causes a .clink directive to be generated
into the section that contains the definition of the symbol. The .clink directive indicates to the linker that the
section is eligible for removal during conditional linking. Therefore, if the section is not referenced by any
other section in the application that is being compiled and linked, it will not be included in the output file
result of the link.

The syntax of the pragma in C/C++ is:

#pragma CLINK (symbol)

The RETAIN pragma has the opposite effect of the CLINK pragma. See Section 6.9.24 for more details.

6.9.3 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in
a section named section name.

The syntax of the pragma in C is:

‘#pragma CODE_SECTION (symbol , "section name ") ‘

The syntax of the pragma in C++ is:

‘#pragma CODE_SECTION (" section name ") ‘

The CODE_SECTION pragma is useful if you have code objects that you want to link into an area
separate from the .text section.

The following examples demonstrate the use of the CODE_SECTION pragma.

Example 6-4. Using the CODE_SECTION Pragma C Source File

#pragma CODE_SECTI ON(fn, "ny_sect")

int fn(int x)

160 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

Example 6-4. Using the CODE_SECTION Pragma C Source File (continued)

{
return x;
}
SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 161

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

Example 6-5. Generated Assembly Code From Example 6-4

. sect "nmy_sect”
.global _fn
BRI R Sk kS Sk kS kS Sk kS Sk Sk Sk Sk kS Sk Sk Sk Sk Sk Sk gk Sk Sk Sk Sk kS Sk Sk Sk Sk Ik kS kS ok ok kS Sk Sk Sk o kI
;* FUNCTI ON NAME: _fn *
. % *
* Regs Modi fi ed . SP *
0 x Regs Used . A4, B3, SP *
* Local Frane Size : O Args + 4 Auto + 0 Save = 4 byte *
BRI R R Sk kS Sk S kS Sk kS kS Sk Sk kS Sk Sk Sk kS kS gk Sk Sk Sk Sk kS Sk kS Ik Sk kS Sk kg kS Sk Sk Sk o ki
_fn:
R K e e e e e e e e e e e e e e m e m e e e m e e m e m e — e m e — e — - - *
RET .82 B3 ;6]
SUB . D2 SP, 8, SP ;14
STW .D2T1 A4, *+SP(4) ;14
ADD . S2 8, SP, SP ;1 6l
NOP 2
; BRANCH OCCURS ;| 6]

6.9.4 The DATA_ALIGN Pragma

The DATA_ALIGN pragma aligns the symbol in C, or the next symbol declared in C++, to an alignment
boundary. The alignment boundary is the maximum of the symbol's default alignment value or the value of
the constant in bytes. The constant must be a power of 2.

The syntax of the pragma in C is:

‘#pragma DATA_ALIGN (symbol , constant); ‘

The syntax of the pragma in C++ is:

]#pragma DATA_ALIGN (constant); ‘

162 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives
6.9.5 The DATA_MEM_BANK Pragma

The DATA_MEM_BANK pragma aligns a symbol or variable to a specified C6000 internal data memory
bank boundary. The constant specifies a specific memory bank to start your variables on. (See Figure 4-1
for a graphic representation of memory banks.) The value of constant depends on the C6000 device:

C6200 The C6200 devices contain four memory banks (0, 1, 2, and 3); constant can be 0 or 2.
C6400 The C6400 devices contain 8 memory banks; constant can be 0, 2, 4, or 6.

C6400+ The C6400+ devices contain 8 memory banks; constant can be 0, 2, 4, or 6.

C6600 The C6600 devices contain 8 memory banks; constant can be 0, 2, 4, or 6.

C6700 The C6700 devices contain 8 memory banks; constant can be 0, 2, 4, or 6.

C6740 The C6740 devices contain 8 memory banks; constant can be 0, 2, 4, or 6.

The syntax of the pragma in C is:

‘#pragma DATA_MEM_BANK (symbol, constant); ‘

The syntax of the pragma in C++ is:

‘ #pragma DATA_MEM_BANK (constant); ‘

Both global and local variables can be aligned with the DATA_MEM_BANK pragma. The
DATA_MEM_BANK pragma must reside inside the function that contains the local variable being aligned.
The symbol can also be used as a parameter in the DATA_SECTION pragma.

When optimization is enabled, the tools may or may not use the stack to store the values of local
variables.

The DATA_MEM_BANK pragma allows you to align data on any data memory bank that can hold data of
the type size of the symbol. This is useful if you need to align data in a particular way to avoid memory
bank conflicts in your hand-coded assembly code versus padding with zeros and having to account for the
padding in your code.

This pragma increases the amount of space used in data memory by a small amount as padding is used
to align data onto the correct bank.

For C6200, the code in Example 6-6 guarantees that array x begins at an address ending in 4 or ¢ (in
hexadecimal), and that array y begins at an address ending in 4 or c. The alignment for array y affects its
stack placement. Array z is placed in the .z_sect section, and begins at an address ending in O or 8.

Example 6-6. Using the DATA_MEM_BANK Pragma

#pragma DATA_MEM BANK (x, 2);
short x[100];

#pragma DATA_MEM BANK (z, 0);
#pragma DATA_SECTION (z, ".z_sect");
short z[100];

voi d main()

{
#pragma DATA MEM BANK (y, 2);
short y[100];

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 163
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

6.9.6 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in
a section named section name.

The syntax of the pragma in C is:

‘#pragma DATA_SECTION (symbol , " section name "); ‘

The syntax of the pragma in C++ is:

’#pragma DATA_SECTION (" section name "); ‘

The DATA_SECTION pragma is useful if you have data objects that you want to link into an area separate
from the .bss section. If you allocate a global variable using a DATA_SECTION pragma and you want to
reference the variable in C code, you must declare the variable as extern far.

Example 6-7 through Example 6-9 demonstrate the use of the DATA_SECTION pragma.

Example 6-7. Using the DATA_SECTION Pragma C Source File

#pragma DATA_SECTI ON(bufferB, "ny_sect")
char bufferA 512];
char bufferB[512];

Example 6-8. Using the DATA_SECTION Pragma C++ Source File

char bufferA[512];
#pragma DATA _SECTI ON("my_sect")
char bufferB[512];

Example 6-9. Using the DATA_SECTION Pragma Assembly Source File

.global _bufferA
. bss _bufferA 512,4
.global _bufferB

164 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

6.9.7 The Diagnostic Message Pragmas

The following pragmas can be used to control diagnostic messages in the same ways as the
corresponding command line options:

Pragma Option Description

DIAG_SUPPRESS num -pds=num[, num,, nums...] Suppress diagnostic num
DIAG_REMARK num -pdsr=num[, num,, nums...] Treat diagnostic num as a remark
DIAG_WARNING num -pdsw=num[, num,, hums...] Treat diagnostic num as a warning
DIAG_ERROR num -pdse=numl[, num,, nums...] Treat diagnostic num as an error
DIAG_DEFAULT num n/a Use default severity of the diagnostic

The syntax of the pragmas in C is:

‘#pragma DIAG_XXX [E]num[, num,, nums...]

The diagnostic affected (num) is specified using either an error number or an error tag name. The equal
sign (=) is optional. Any diagnostic can be overridden to be an error, but only diagnostics with a severity of
discretionary error or below can have their severity reduced to a warning or below, or be suppressed. The
diag_default pragma is used to return the severity of a diagnostic to the one that was in effect before any
pragmas were issued (i.e., the normal severity of the message as modified by any command-line options).

The diagnostic identifier number is output along with the message when the -pden command line option is
specified.
6.9.8 The FUNC_ALWAYS_INLINE Pragma

The FUNC_ALWAYS_INLINE pragma instructs the compiler to always inline the named function. The
compiler only inlines the function if it is legal to inline the function and the compiler is invoked with any
level of optimization (--opt_level=0).

The pragma must appear before any declaration or reference to the function that you want to inline. In C,
the argument func is the name of the function that will be inlined. In C++, the pragma applies to the next
function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_ALWAYS_INLINE (func);

The syntax of the pragma in C++ is:

| #pragma FUNC_ALWAYS_INLINE;

Use Caution with the FUNC_ALWAYS_INLINE Pragma

NOTE: The FUNC_ALWAYS_INLINE pragma overrides the compiler's inlining decisions. Overuse
of the pragma could result in increased compilation times or memory usage, potentially
enough to consume all available memory and result in compilation tool failures.

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 165

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

6.9.9 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named function cannot be expanded
inline. Any function named with this pragma overrides any inlining you designate in any other way, such as
using the inline keyword. Automatic inlining is also overridden with this pragma; see Section 2.11.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that cannot be inlined. In C++, the pragma applies to the
next function declared.

The syntax of the pragma in C is:

| #pragma FUNC_CANNOT_INLINE (func); |

The syntax of the pragma in C++ is:

| #pragma FUNC_CANNOT_INLINE; |

6.9.10 The FUNC_EXT_CALLED Pragma

When you use the --program_level_compile option, the compiler uses program-level optimization. When
you use this type of optimization, the compiler removes any function that is not called, directly or indirectly,
by main. You might have C/C++ functions that are called by hand-coded assembly instead of main.

The FUNC_EXT_CALLED pragma specifies to the optimizer to keep these C functions or any other
functions that these C/C++ functions call. These functions act as entry points into C/C++.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that you do not want removed. In C++, the pragma applies
to the next function declared.

The syntax of the pragma in C is:

| #pragma FUNC_EXT_CALLED (func); |

The syntax of the pragma in C++ is:

| #pragma FUNC_EXT_CALLED; |

Except for _c_int00, which is the name reserved for the system reset interrupt for C/C++programs, the
name of the interrupt (the func argument) does not need to conform to a naming convention.

When you use program-level optimization, you may need to use the FUNC_EXT_CALLED pragma with
certain options. See Section 3.7.2.

166 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

6.9.11 The FUNC_INTERRUPT_THRESHOLD Pragma

The compiler allows interrupts to be disabled around software pipelined loops for threshold cycles within
the function. This implements the --interrupt_threshold option for a single function (see Section 2.12). The
FUNC_INTERRUPT_THRESHOLD pragma always overrides the --interrupt_threshold=n command line
option. A threshold value less than 0 assumes that the function is never interrupted, which is equivalent to
an interrupt threshold of infinity.

The syntax of the pragma in C is:

| #pragma FUNC_INTERRUPT_THRESHOLD (func , threshold); |

The syntax of the pragma in C++ is:

| #pragma FUNC_INTERRUPT_THRESHOLD (threshold); |

The following examples demonstrate the use of different thresholds:

* The function foo() must be interruptible at least every 2,000 cycles:
#pragma FUNC_| NTERRUPT_THRESHCOLD (f oo, 2000)

* The function foo() must always be interruptible.
#pragma FUNC_| NTERRUPT_THRESHOLD (foo, 1)

* The function foo() is never interrupted.
#pragma FUNC_| NTERRUPT_THRESHOLD (foo, -1)

6.9.12 The FUNC_IS PURE Pragma

The FUNC_IS_PURE pragma specifies to the compiler that the named function has no side effects. This
allows the compiler to do the following:

* Delete the call to the function if the function's value is not needed
» Delete duplicate functions

The pragma must appear before any declaration or reference to the function. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

| #pragma FUNC_IS_PURE (func); |

The syntax of the pragma in C++ is:

| #pragma FUNC_IS_PURE; |

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 167

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

6.9.13 The FUNC_IS_SYSTEM Pragma

The FUNC_IS_SYSTEM pragma specifies to the compiler that the named function has the behavior
defined by the ANSI/ISO standard for a function with that name.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function to treat as an ANSI/ISO standard function. In C++, the
pragma applies to the next function declared.

The syntax of the pragma in C is:

| #pragma FUNC_IS_SYSTEM (func); |

The syntax of the pragma in C++ is:

| #pragma FUNC_IS_SYSTEM; |

6.9.14 The FUNC_NEVER_RETURNS Pragma

The FUNC_NEVER_RETURNS pragma specifies to the compiler that the function never returns to its
caller.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that does not return. In C++, the pragma applies to the next
function declared.

The syntax of the pragma in C is:

| #pragma FUNC_NEVER_RETURNS (func); |

The syntax of the pragma in C++ is:

| #pragma FUNC_NEVER_RETURNS; |

6.9.15 The FUNC_NO_GLOBAL_ASG Pragma

The FUNC_NO_GLOBAL_ASG pragma specifies to the compiler that the function makes no assignments
to named global variables and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to
the next function declared.

The syntax of the pragma in C is:

[#pragma FUNC_NO_GLOBAL_ASG (func); |

The syntax of the pragma in C++ is:

| #pragma FUNC_NO_GLOBAL_ASG; |

168 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

6.9.16 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the compiler that the function makes no assignments
through pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to
the next function declared.

The syntax of the pragma in C is:

| #pragma FUNC_NO_IND_ASG (func); |

The syntax of the pragma in C++ is:

#pragma FUNC_NO_IND_ASG; |

6.9.17 The FUNCTION_OPTIONS Pragma

The FUNCTION_OPTIONS pragma allows you to compile a specific function in a C or C++ file with
additional command-line compiler options. The affected function will be compiled as if the specified list of
options appeared on the command line after all other compiler options. In C, the pragma is applied to the
function specified. In C++, the pragma is applied to the next function.

The syntax of the pragma in C is:

‘#pragma FUNCTION_OPTIONS (func, "additional options"); ‘

The syntax of the pragma in C++ is:

| #pragma FUNCTION_OPTIONS("additional options"); |

6.9.18 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C code. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

‘#pragma INTERRUPT (func); ‘

The syntax of the pragma in C++ is:

| #pragma INTERRUPT ;

The code for the function will return via the IRP (interrupt return pointer).

Except for _c_int00, which is the name reserved for the system reset interrupt for C programs, the name
of the interrupt (the func argument) does not need to conform to a naming convention.

HWI Objects and the INTERRUPT Pragma

NOTE: The INTERRUPT pragma must not be used when BIOS HWI objects are used in
conjunction with C functions. The HWI_enter/HWI_exit macros and the HWI dispatcher
contain this functionality, and the use of the C modifier can cause negative results.

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 169

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

6.9.19 The MUST_ITERATE Pragma

The MUST _ITERATE pragma specifies to the compiler certain properties of a loop. You guarantee that
these properties are always true. Through the use of the MUST_ITERATE pragma, you can guarantee
that a loop executes a specific number of times. Anytime the UNROLL pragma is applied to a loop,
MUST _ITERATE should be applied to the same loop. For loops the MUST_ITERATE pragma's third
argument, multiple, is the most important and should always be specified.

Furthermore, the MUST_ITERATE pragma should be applied to any other loops as often as possible. This
is because the information provided via the pragma (especially the minimum number of iterations) aids the
compiler in choosing the best loops and loop transformations (that is, software pipelining and nested loop
transformations). It also helps the compiler reduce code size.

No statements are allowed between the MUST_ITERATE pragma and the for, while, or do-while loop to
which it applies. However, other pragmas, such as UNROLL and PROB_ITERATE, can appear between
the MUST_ITERATE pragma and the loop.

6.9.19.1 The MUST_ITERATE Pragma Syntax

The syntax of the pragma for C and C++ is:

#pragma MUST_ITERATE (min, max, multiple);

The arguments min and max are programmer-guaranteed minimum and maximum trip counts. The trip
count is the number of times a loop iterates. The trip count of the loop must be evenly divisible by multiple.
All arguments are optional. For example, if the trip count could be 5 or greater, you can specify the
argument list as follows:

#pragma MUST_| TERATE(5) ;

However, if the trip count could be any nonzero multiple of 5, the pragma would look like this:
#pragma MUST_| TERATE(5, , 5); /* Note the blank field for nmax */

It is sometimes necessary for you to provide min and multiple in order for the compiler to perform
unrolling. This is especially the case when the compiler cannot easily determine how many iterations the
loop will perform (that is, the loop has a complex exit condition).

When specifying a multiple via the MUST_ITERATE pragma, results of the program are undefined if the
trip count is not evenly divisible by multiple. Also, results of the program are undefined if the trip count is
less than the minimum or greater than the maximum specified.

If no min is specified, zero is used. If no max is specified, the largest possible number is used. If multiple
MUST_ITERATE pragmas are specified for the same loop, the smallest max and largest min are used.

6.9.19.2 Using MUST_ITERATE to Expand Compiler Knowledge of Loops

Through the use of the MUST_ITERATE pragma, you can guarantee that a loop executes a certain
number of times. The example below tells the compiler that the loop is guaranteed to run exactly 10 times:

#pragma MUST_| TERATE(10, 10) ;

for(i =0; i <trip_count; i++) { ...

In this example, the compiler attempts to generate a software pipelined loop even without the pragma.
However, if MUST_ITERATE is not specified for a loop such as this, the compiler generates code to
bypass the loop, to account for the possibility of 0 iterations. With the pragma specification, the compiler
knows that the loop iterates at least once and can eliminate the loop-bypassing code.

MUST_ITERATE can specify a range for the trip count as well as a factor of the trip count. For example:
pragma MUST_| TERATE(8, 48, 8);
for(i =0; i <trip_count; i++) { ...

This example tells the compiler that the loop executes between 8 and 48 times and that the trip_count
variable is a multiple of 8 (8, 16, 24, 32, 40, 48). The multiple argument allows the compiler to unroll the
loop.

170

TMS320C6000C/C++ Language Implementation SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

You should also consider using MUST_ITERATE for loops with complicated bounds. In the following
example:

for(i2 =ipos[2]; i2 <40; i2 +=5) { ...
The compiler would have to generate a divide function call to determine, at run time, the exact number of

iterations performed. The compiler will not do this. In this case, using MUST_ITERATE to specify that the
loop always executes eight times allows the compiler to attempt to generate a software pipelined loop:

#pragma MUST_| TERATE(8, 8);

for(i2 = ipos[2]; i2 <40; i2 +=5) { ...

6.9.20 The NMI_INTERRUPT Pragma

The NMI_INTERRUPT pragma enables you to handle non-maskable interrupts directly with C code. In C,
the argument func is the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

| #pragma NMI_INTERRUPT(func); |

The syntax of the pragma in C++ is:

| #pragma NMI_INTERRUPT; |

The code generated for the function will return via the NRP versus the IRP as for a function declared with
the interrupt keyword or INTERRUPT pragma.

Except for _c_int00, which is the name reserved for the system reset interrupt for C programs, the name
of the interrupt (function) does not need to conform to a naming convention.

6.9.21 The NO_HOOKS Pragma

The NO_HOOKS pragma prevents entry and exit hook calls from being generated for a function.

The syntax of the pragma in C is:

’#pragma NO_HOOKS (func); ‘

The syntax of the pragma in C++ is:

‘#pragma NO_HOOKS; ‘

See Section 2.16 for details on entry and exit hooks.

SPRU187T-July 2011 TMS320C6000C/C++ Language Implementation 171
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

6.9.22 The PROB_ITERATE Pragma

The PROB_ITERATE pragma specifies to the compiler certain properties of a loop. You assert that these
properties are true in the common case. The PROB_ITERATE pragma aids the compiler in choosing the
best loops and loop transformations (that is, software pipelining and nested loop transformations).
PROB_ITERATE is useful only when the MUST_ITERATE pragma is not used or the PROB_ITERATE
parameters are more constraining than the MUST_ITERATE parameters.

No statements are allowed between the PROB_ITERATE pragma and the for, while, or do-while loop to
which it applies. However, other pragmas, such as UNROLL and MUST_ITERATE, may appear between
the PROB_ITERATE pragma and the loop.

The syntax of the pragma for C and C++ is:

#pragma PROB_ITERATE(min , max)

Where min and max are the minimum and maximum trip counts of the loop in the common case. The trip
count is the number of times a loop iterates. Both arguments are optional.

For example, PROB_ITERATE could be applied to a loop that executes for eight iterations in the majority
of cases (but sometimes may execute more or less than eight iterations):

#pragma PROB_| TERATE(8, 8);

If only the minimum expected trip count is known (say it is 5), the pragma would look like this:
#pragma PROB_| TERATE(S) ;

If only the maximum expected trip count is known (say it is 10), the pragma would look like this:
#pragma PROB_| TERATE(, 10); /* Note the blank field for mn */

6.9.23 The RESET_MISRA Pragma

The RESET_MISRA pragma resets the specified MISRA-C:2004 rules to the state they were before any
CHECK_MISRA pragmas (see Section 6.9.1) were processed. For instance, if a rule was enabled on the
command line but disabled in the source, the RESET_MISRA pragma resets it to enabled. This pragma

accepts the same format as the --check_misra option, except for the "none" keyword.

The syntax of the pragma in C is:

#pragma RESET_MISRA (" {alllrequired|advisory|rulespec} ")

The rulespec parameter is a comma-separated list of specifiers. See Section 6.3 for details.

6.9.24 The RETAIN Pragma

The RETAIN pragma can be applied to a code or data symbol. It causes a .retain directive to be
generated into the section that contains the definition of the symbol. The .retain directive indicates to the
linker that the section is ineligible for removal during conditional linking. Therefore, regardless whether or
not the section is referenced by another section in the application that is being compiled and linked, it will
be included in the output file result of the link.

The syntax of the pragma in C/C++ is:

#pragma RETAIN (symbol)

The CLINK pragma has the opposite effect of the RETAIN pragma. See Section 6.9.2 for more details.

172

TMS320C6000C/C++ Language Implementation SPRU187T-July 2011
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

6.9.25 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
These pragmas can be used to set the section for all declarations below the pragma.

The syntax of the pragmas in C/C++ is:

#pragma SET_CODE_SECTION (section name)
#pragma SET_DATA_SECTION (section name)

In Example 6-10 x and y are put in the section mydata. To reset the current section to the default used by
the compiler, a blank paramater should be passed to the pragma. An easy way to think of the pragma is
that it is like applying the CODE_SECTION or DATA_SECTION pragma to all symbols below it.

Example 6-10. Setting Section With SET_DATA_SECTION Pragma

#pragma SET_DATA SECTI O\(" nydat a")
int x;

int y;

#pragma SET_DATA SECTI O\()

The pragmas apply to both declarations and definitions. If applied to a declaration and not the definition,
the pragma that is active at the declaration is used to set the section for that symbol. Here is an example:

Example 6-11. Setting a Section With SET_CODE_SECTION Pragma

#pragma SET_CODE_SECTI ON(" func1")
extern void funcl();
#pragma SET_CODE_SECTI ON()

;/;)i.d funcl() { ... }

In Example 6-11 funcl is placed in section funcl. If conflicting sections are specified at the declaration
and definition, a diagnostic is issued.

The current CODE_SECTION and DATA_SECTION pragmas and GCC attributes can be used to override
the SET_CODE_SECTION and SET_DATA_SECTION pragmas. For example:

Example 6-12. Overriding SET_DATA_SECTION Setting

#pragma DATA_SECTI ON(x, "x_data")
#pragma SET_DATA SECTI O\(" nydat a")
int x;

int y;

#pragma SET_DATA_SECTI ON()

In Example 6-12 x is placed in x_data and y is placed in mydata. No diagnostic is issued for this case.

The pragmas work for both C and C++. In C++, the pragmas are ignored for templates and for implictly
created objects, such as implicit constructors and virtual function tables.

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 173

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

6.9.26 The STRUCT_ALIGN Pragma

The STRUCT_ALIGN pragma is similar to DATA_ALIGN, but it can be applied to a structure, union type,
or typedef and is inherited by any symbol created from that type. The STRUCT_ALIGN pragma is
supported only in C.

The syntax of the pragma is:

#pragma STRUCT_ALIGN(type , constant expression) ‘

This pragma guarantees that the alignment of the named type or the base type of the named typedef is at
least equal to that of the expression. (The alignment may be greater as required by the compiler.) The
alignment must be a power of 2. The type must be a type or a typedef name. If a type, it must be either a
structure tag or a union tag. If a typedef, its base type must be either a structure tag or a union tag.

Since ANSI/ISO C declares that a typedef is simply an alias for a type (i.e. a struct) this pragma can be
applied to the struct, the typedef of the struct, or any typedef derived from them, and affects all aliases of
the base type.

This example aligns any st_tag structure variables on a page boundary:

typedef struct st_tag
{

int a;
short b;
} st_typedef;

#pragma STRUCT_ALI GN (st_tag, 128);
#pragma STRUCT_ALI GN (st_typedef, 128);

Any use of STRUCT_ALIGN with a basic type (int, short, float) or a variable results in an error.

6.9.27 The UNROLL Pragma

The UNROLL pragma specifies to the compiler how many times a loop should be unrolled. The UNROLL
pragma is useful for helping the compiler utilize SIMD instructions on the C6400 family. It is also useful in
cases where better utilization of software pipeline resources are needed over a non-unrolled loop.

The optimizer must be invoked (use --opt_level=[1]|2|3] or -O1, -O2, or -0O3) in order for pragma-specified
loop unrolling to take place. The compiler has the option of ignoring this pragma.

No statements are allowed between the UNROLL pragma and the for, while, or do-while loop to which it
applies. However, other pragmas, such as MUST_ITERATE and PROB_ITERATE, can appear between
the UNROLL pragma and the loop.

The syntax of the pragma for C and C++ is:

#pragma UNROLL(n);

If possible, the compiler unrolls the loop so there are n copies of the original loop. The compiler only
unrolls if it can determine that unrolling by a factor of n is safe. In order to increase the chances the loop is
unrolled, the compiler needs to know certain properties:

* The loop iterates a multiple of n times. This information can be specified to the compiler via the
multiple argument in the MUST_ITERATE pragma.

* The smallest possible number of iterations of the loop
* The largest possible number of iterations of the loop
The compiler can sometimes obtain this information itself by analyzing the code. However, sometimes the

compiler can be overly conservative in its assumptions and therefore generates more code than is
necessary when unrolling. This can also lead to not unrolling at all.

Furthermore, if the mechanism that determines when the loop should exit is complex, the compiler may
not be able to determine these properties of the loop. In these cases, you must tell the compiler the
properties of the loop by using the MUST_ITERATE pragma.

174 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS
INSTRUMENTS

www.ti.com The _Pragma Operator

Specifying #pragma UNROLL(1); asks that the loop not be unrolled. Automatic loop unrolling also is not
performed in this case.

If multiple UNROLL pragmas are specified for the same loop, it is undefined which pragma is used, if any.

6.10 The _Pragma Operator
The C6000 C/C++ compiler supports the C99 preprocessor _Pragma() operator. This preprocessor
operator is similar to #pragma directives. However, _Pragma can be used in preprocessing macros
(#defines).
The syntax of the operator is:
‘_Pragma (" string_literal ");
The argument string_literal is interpreted in the same way the tokens following a #pragma directive are
processed. The string_literal must be enclosed in quotes. A quotation mark that is part of the string_literal
must be preceded by a backward slash.
You can use the _Pragma operator to express #pragma directives in macros. For example, the
DATA_SECTION syntax:
#pragma DATA_SECTION(func ," section ");
Is represented by the _Pragma() operator syntax:
_Pragma ("DATA_SECTION(func \" section \")")
The following code illustrates using _Pragma to specify the DATA_SECTION pragma in a macro:
#define EM T_PRAGVA(Xx) _Pragma(#x)
#defi ne COLLECT_DATA(var) EM T_PRAGVA(DATA_SECTI O\(var, "mysecti on"))
COLLECT_DATA(x)
int x;
The EMIT_PRAGMA macro is needed to properly expand the quotes that are required to surround the
section argument to the DATA_SECTION pragma.

SPRU187T-July 2011 TMS320C6000C/C++ Language Implementation 175

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Application Binary Interface www.ti.com

6.11

Application Binary Interface
Selecting one of the two ABIs supported by the C6000 compiler is discussed in Section 2.15.

An ABI should define how functions that are written separately, and compiled or assembled separately
can work together. This involves standardizing the data type representation, register conventions, and
function structure and calling conventions. It should define linkname generation from C symbol names. It
should define the object module format and the debug format. It should document how the system is
initialized. In the case of C++ it should define C++ name mangling and exception handling support.

An application must be only one of COFF ABI and EABI; these ABIs are not compatible.

6.11.1 COFF ABI

COFF ABI is the only ABI supported by older compilers. To generate object files compatible with older
COFF ABI object files, you must use COFF ABI (--abi=coffabi, the default). This option must also be used
when assembly hand-coded assembly source files intended to be used in a COFF ABI application.

6.11.2 EABI

6.12

EABI requires the ELF object file format which enables supporting modern language features like early
template instantiation and export inline functions support.

TI-specific information on EABI mode is described in Section 7.8.4.

To generate object files compatible with EABI, you must use C6000 compiler version 7.2 or greater; see
Section 2.15. The __TI_EABI__ predefined symbol is defined and set to 1 if compiling for EABI and is not
defined otherwise.

Object File Symbol Naming Conventions (Linknames)

Each externally visible identifier is assigned a unique symbol name to be used in the object file, a
so-called linkname. This name is assigned by the compiler according to an algorithm which depends on
the name, type, and source language of the symbol. This algorithm may add a prefix to the identifier
(typically an underscore), and it may mangle the name. This algorithm may mangle the name.

In COFF ABI, the linkname for all objects and functions is the same as the name in the C source with an
added underscore prefix. This prevents any C identifier from colliding with any identifier in the assembly
code namespace, such as an assembler keyword.

In EABI, no prefix is used. If a C identifier would collide with an assembler keyword, the compiler will
escape the identifier with double parallel bars, which instructs the assembler not to treat the identifier as a
keyword. You are responsible for making sure that C identifiers do not collide with user-defined assembly
code identifiers.

Name mangling encodes the types of the parameters of a function in the linkname for a function. Name
mangling only occurs for C++ functions which are not declared 'extern "C". Mangling allows function
overloading, operator overloading, and type-safe linking. Be aware that the return value of the function is
not encoded in the mangled name, as C++ functions cannot be overloaded based on the return value.

For COFF ABI, the mangling algorithm used closely follows that described in The Annotated Reference
Manual (ARM).

For example, the general form of a C++ linkname for a function named func is:
_func__F parmcodes
Where parmcodes is a sequence of letters that encodes the parameter types of func.

For this simple C++ source file:
int foo(int i){ } /1global C++ function

This is the resulting assembly code:
_foo__Fi

176

TMS320C6000C/C++ Language Implementation SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS
INSTRUMENTS

www.ti.com Initializing Static and Global Variables in COFF ABI Mode

6.13

The linkname of foo is _foo__ Fi, indicating that foo is a function that takes a single argument of type int.
To aid inspection and debugging, a hame demangling utility is provided that demangles names into those
found in the original C++ source. See Chapter 9 for more information.

For EABI, the mangling algorithm follows that described in the Itanium C++ ABI
(http://www.codesourcery.com/cxx-abi/abi.html).

int foo(int i) { } would be mangled " Z3fooi"

Initializing Static and Global Variables in COFF ABI Mode

The ANSI/ISO C standard specifies that global (extern) and static variables without explicit initializations
must be initialized to 0 before the program begins running. This task is typically done when the program is
loaded. Because the loading process is heavily dependent on the specific environment of the target
application system, in COFF ABI mode the compiler itself makes no provision for initializing to 0 otherwise
uninitialized static storage class variables at run time. It is up to your application to fulfill this requirement.

Initialize Global Objects

NOTE: You should explicitly initialize all global objects which you expected the compiler would set
to zero by default.

In C6000 EABI mode the uninitialized variables are zero initialized automatically.

6.13.1 |Initializing Static and Global Variables With the Linker

If your loader does not preinitialize variables, you can use the linker to preinitialize the variables to 0 in the
object file. For example, in the linker command file, use a fill value of O in the .bss section:
SECTI ONS

{

.bss: {} = 0x00;

}

Because the linker writes a complete load image of the zeroed .bss section into the output COFF file, this
method can have the unwanted effect of significantly increasing the size of the output file (but not the
program).

If you burn your application into ROM, you should explicitly initialize variables that require initialization.
The preceding method initializes .bss to 0 only at load time, not at system reset or power up. To make
these variables 0 at run time, explicitly define them in your code.

For more information about linker command files and the SECTIONS directive, see the linker description
information in the TMS320C6000 Assembly Language Tools User's Guide.

6.13.2 |Initializing Static and Global Variables With the const Type Qualifier

Static and global variables of type const without explicit initializations are similar to other static and global
variables because they might not be preinitialized to 0 (for the same reasons discussed in Section 6.13).
For example:

const int zero; /* may not be initialized to 0 */

However, the initialization of const global and static variables is different because these variables are
declared and initialized in a section called .const. For example:

const int zero =0 /* guaranteed to be 0 */

This corresponds to an entry in the .const section:

. sect . const
_zero
.word 0

SPRU187T-July 2011 TMS320C6000C/C++ Language Implementation 177
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.codesourcery.com/cxx-abi/abi.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Changing the ANSI/ISO C Language Mode www.ti.com

6.14

This feature is particularly useful for declaring a large table of constants, because neither time nor space
is wasted at system startup to initialize the table. Additionally, the linker can be used to place the .const
section in ROM.

You can use the DATA_SECTION pragma to put the variable in a section other than .const. For example,
the following C code:
#pragma DATA_SECTION (var, ".nmysect");
const int zero=0;
is compiled into this assembly code:

. sect . nysect
_zero
.word 0

Changing the ANSI/ISO C Language Mode

The --kr_compatible, --relaxed_ansi, and --strict_ansi options let you specify how the C/C++ compiler
interprets your source code. You can compile your source code in the following modes:

* Normal ANSI/ISO mode

+ K&R C mode

* Relaxed ANSI/ISO mode

» Strict ANSI/ISO mode

The default is normal ANSI/ISO mode. Under normal ANSI/ISO mode, most ANSI/ISO violations are
emitted as errors. Strict ANSI/ISO violations (those idioms and allowances commonly accepted by C/C++

compilers, although violations with a strict interpretation of ANSI/ISO), however, are emitted as warnings.
Language extensions, even those that conflict with ANSI/ISO C, are enabled.

K&R C mode does not apply to C++ code.

6.14.1 Compatibility With K&R C (--kr_compatible Option)

The ANSI/ISO C/C++ language is a superset of the de facto C standard defined in Kernighan and
Ritchie's The C Programming Language. Most programs written for other non-ANSI/ISO compilers
correctly compile and run without modification.

There are subtle changes, however, in the language that can affect existing code. Appendix C in The C
Programming Language (second edition, referred to in this manual as K&R) summarizes the differences
between ANSI/ISO C and the first edition's C standard (the first edition is referred to in this manual as
K&R C).

To simplify the process of compiling existing C programs with the ANSI/ISO C/C++ compiler, the compiler
has a K&R option (--kr_compatible) that modifies some semantic rules of the language for compatibility
with older code. In general, the --kr_compatible option relaxes requirements that are stricter for ANSI/ISO
C than for K&R C. The --kr_compatible option does not disable any new features of the language such as
function prototypes, enumerations, initializations, or preprocessor constructs. Instead, --kr_compatible
simply liberalizes the ANSI/ISO rules without revoking any of the features.

The specific differences between the ANSI/ISO version of C and the K&R version of C are as follows:

* The integral promotion rules have changed regarding promoting an unsigned type to a wider signed
type. Under K&R C, the result type was an unsigned version of the wider type; under ANSI/ISO, the
result type is a signed version of the wider type. This affects operations that perform differently when
applied to signed or unsigned operands; namely, comparisons, division (and mod), and right shift:
unsi gned short u;
int i;
if (u<i) /* SI GNED conparison, unless --kr_conpatible used */

* ANSI/ISO prohibits combining two pointers to different types in an operation. In most K&R compilers,
this situation produces only a warning. Such cases are still diagnosed when --kr_compatible is used,
but with less severity:

int *p;
char *q = p; /* error without --kr_conpatible, warning with --kr_conpatible */
178 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Changing the ANSI/ISO C Language Mode

» External declarations with no type or storage class (only an identifier) are illegal in ANSI/ISO but legal
in K&R:

a; /* illegal unless --kr_conpatible used */

* ANSI/ISO interprets file scope definitions that have no initializers as tentative definitions. In a single
module, multiple definitions of this form are fused together into a single definition. Under K&R, each
definition is treated as a separate definition, resulting in multiple definitions of the same object and
usually an error. For example:
int a;
int a; /* illegal if --kr_conpatible used, OKif not */

Under ANSI/ISO, the result of these two definitions is a single definition for the object a. For most K&R
compilers, this sequence is illegal, because int a is defined twice.

* ANSI/ISO prohibits, but K&R allows objects with external linkage to be redeclared as static:

extern int a;
static int a; /* illegal unless --kr_conpatible used */

» Unrecognized escape sequences in string and character constants are explicitly illegal under ANSI/ISO
but ignored under K&R:
char ¢ = '"\q'; /* same as 'q" if --kr_conpatible used, error if not */

* ANSI/ISO specifies that bit fields must be of type int or unsigned. With --kr_compatible, bit fields can
be legally defined with any integral type. For example:
struct s

{

H
* K&R syntax allows a trailing comma in enumerator lists:

short f : 2; /* illegal unless --kr_conpatible used */

enum{ a, b, ¢, }; /* illegal unless --kr_conpatible used */
+ K&R syntax allows trailing tokens on preprocessor directives:
#endi f NAME /* illegal unless --kr_conpatible used */

6.14.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and
--relaxed_ansi Options)

Use the --strict_ansi option when you want to compile under strict ANSI/ISO mode. In this mode, error
messages are provided when non-ANSI/ISO features are used, and language extensions that could
invalidate a strictly conforming program are disabled. Examples of such extensions are the inline and asm
keywords.

Use the --relaxed_ansi option when you want the compiler to ignore strict ANSI/ISO violations rather than
emit a warning (as occurs in normal ANSI/ISO mode) or an error message (as occurs in strict ANSI/ISO
mode). In relaxed ANSI/ISO mode, the compiler accepts extensions to the ANSI/ISO C standard, even
when they conflict with ANSI/ISO C. The GCC language extensions described in Section 6.15 are
available in relaxed ANSI/ISO mode.

SPRU187T—-July 2011 TMS320C6000C/C++ Language Implementation 179

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

GNU Language Extensions www.ti.com

6.14.3 Enabling Embedded C++ Mode (--embedded_cpp Option)

6.15

The compiler supports the compilation of embedded C++. In this mode, some features of C++ are
removed that are of less value or too expensive to support in an embedded system. When compiling for
embedded C++, the compiler generates diagnostics for the use of omitted features.

Embedded C++ is enabled by compiling with the --embedded_cpp option.

Embedded C++ omits these C++ features:
+ Templates

* Exception handling

* Run-time type information

* The new cast syntax

* The keyword mutable

* Multiple inheritance

* Virtual inheritance

Under the standard definition of embedded C++, namespaces and using-declarations are not supported.
The C6000 compiler nevertheless allows these features under embedded C++ because the C++
run-time-support library makes use of them. Furthermore, these features impose no run-time penalty.

The compiler does not support embedded C++ run-time-support libraries.

GNU Language Extensions

The GNU compiler collection (GCC) defines a number of language features not found in the ANSI/ISO C
and C++ standards. The definition and examples of these extensions (for GCC version 3.4) can be found
at the GNU web site, http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/C-Extensions.html.

Most of these extensions are also available for C++ source code.

6.15.1 Extensions

Most of the GCC language extensions are available in the TI compiler when compiling in relaxed ANSI
mode (--relaxed_ansi) or if the --gcc option is used.

The extensions that the TI compiler supports are listed in Table 6-4, which is based on the list of
extensions found at the GNU web site. The shaded rows describe extensions that are not supported.

Table 6-4. GCC Language Extensions

Extensions Descriptions

Statement expressions Putting statements and declarations inside expressions (useful for creating smart 'safe’ macros)
Local labels Labels local to a statement expression

Labels as values Pointers to labels and computed gotos

Nested functions As in Algol and Pascal, lexical scoping of functions
Constructing calls Dispatching a call to another function

Naming types® Giving a name to the type of an expression

typeof operator typeof referring to the type of an expression

Generalized Ivalues Using question mark (?) and comma (,) and casts in lvalues
Conditionals Omitting the middle operand of a ?: expression

long long Double long word integers and long long int type

Hex floats Hexadecimal floating-point constants

Complex Data types for complex numbers

Zero length Zero-length arrays

Variadic macros Macros with a variable number of arguments

Variable length Arrays whose length is computed at run time

@ Feature defined for GCC 3.0; definition and examples at http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc/C-Extensions.html

180 TMS320C6000C/C++ Language Implementation SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/C-Extensions.html
http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc/C-Extensions.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

TEXAS
INSTRUMENTS

www.ti.com

GNU Language Extensions

Table 6-4. GCC Language Extensions (continued)

Extensions

Descriptions

Empty structures

Structures with no members

Subscripting

Any array can be subscripted, even if it is not an Ivalue.

Escaped newlines

Slightly looser rules for escaped newlines

Multi-line strings®

String literals with embedded newlines

Pointer arithmetic

Arithmetic on void pointers and function pointers

Initializers

Non-constant initializers

Compound literals

Compound literals give structures, unions, or arrays as values

Designated initializers

Labeling elements of initializers

Cast to union

Casting to union type from any member of the union

Case ranges

'‘Case 1 ... 9'and such

Mixed declarations

Mixing declarations and code

Function attributes

Declaring that functions have no side effects, or that they can never return

Attribute syntax

Formal syntax for attributes

Function prototypes

Prototype declarations and old-style definitions

C++ comments

C++ comments are recognized.

Dollar signs

A dollar sign is allowed in identifiers.

Character escapes

The character ESC is represented as \e

Variable attributes

Specifying the attributes of variables

Type attributes

Specifying the attributes of types

Alignment

Inquiring about the alignment of a type or variable

Inline

Defining inline functions (as fast as macros)

Assembly labels

Specifying the assembler name to use for a C symbol

Extended asm

Assembler instructions with C operands

Constraints

Constraints for asm operands

Alternate keywords

Header files can use __const__, __asm__, etc

Explicit reg vars

Defining variables residing in specified registers

Incomplete enum types

Define an enum tag without specifying its possible values

Function names

Printable strings which are the name of the current function

Return address

Getting the return or frame address of a function (limited support)

Other built-ins

Other built-in functions (see Section 6.15.5)

Vector extensions

Using vector instructions through built-in functions

Target built-ins

Built-in functions specific to particular targets

Pragmas

Pragmas accepted by GCC

Unnamed fields

Unnamed struct/union fields within structs/unions

Thread-local

Per-thread variables

6.15.2 Function Attributes

The following function attributes are supported: always_inline, const, constructor, deprecated, format,
format_arg, malloc, noinline, noreturn, pure, section, unused, used and warn_unused_result.

In addition, the visibility function attribute is supported for EABI mode (--abi=eabi).

The format attribute is applied to the declarations of printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
vsnprintf, scanf, fscanf and sscan in stdio.h. Thus when GCC extensions are enabled, the data arguments
of these functions are type checked against the format specifiers in the format string argument and
warnings are issued when there is a mismatch. These warnings can be suppressed in the usual ways if

they are not desired.

The malloc attribute is applied to the declarations of malloc, calloc, realloc and memalign in stdlib.h.

SPRU187T-July 2011
Submit Documentation Feedback

TMS320C6000C/C++ Language Implementation 181

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

GNU Language Extensions www.ti.com

6.15.3 Variable Attributes

The following variable attributes are supported: aligned, deprecated, mode, packed, section,
transparent_union, unused, and used.

The used attribute is defined in GCC 4.2 (see
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes).

The packed attribute for structure and union types is available only when there is hardware support for
unaligned accesses. For C6000 this means C6400+, C6400, C6740, and C6600.

In addition, the weak variable attribute is supported for EABI mode (--abi=eabi).

6.15.4 Type Attributes

The following type attributes are supported: aligned, deprecated, packed, transparent_union, and unused.
In addition, the visibility type attribute is supported for EABI mode (--abi=eabi).

The packed attribute on struct and union types is available only for target architectures that have hardware
support for unaligned access (such as C64x+, C64x).

The Tl compiler also supports an unpacked attribute for an enumeration type to allow you to indicate that
the representation is to be an integer type that is no smaller than int; in other words, it is not packed.

6.15.5 Built-In Functions

The following builtin functions are supported: __ builtin_abs, __ builtin_classify_type, _ builtin_constant_p,
__builtin_expect, __builtin_fabs, __ builtin_fabsf, _ builtin_frame_address, __builtin_labs,
__builtin_memcpy, and __ builtin_return_address.

The __ builtin_frame_address function returns zero unless the argument is a constant zero.

The __ builtin_return_address function always returns zero.

182

TMS320C6000C/C++ Language Implementation SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I3 TEXAS
INSTRUMENTS

This chapter describes the TMS320C6000 C/C++ run-time environment. To ensure successful execution
of C/C++ programs, it is critical that all run-time code maintain this environment. It is also important to
follow the guidelines in this chapter if you write assembly language functions that interface with C/C++

Chapter 7

Run-Time Environment

code.

Topic Page
A S | =T g o 201 o o = N 184
Y N © o (=T =T o =TST=T g o] o 189
RS T (T o |53 (=T g @0 o 1V 4=T 4 o o T PP 197
7.4 Function Structure and Calling CoONVENTIONS ...iuiiiiiiiiiiiiiiiieieeieieaee e aaeeaeees 198
7.5 Interfacing C and C++ With Assembly Languageccccceiiiiiiiiiiiiiiiiiiiiieieieeeenann 201
7.6 INterrupt HanAling ..e.eeeeeii et et ettt e e e e e e e e et e e e e nan e nneen 229
7.7 Run-Time-Support Arithmetic ROULINEScuiuinieiei e e 231
7.8 System INItIAliZAtioNcucuieieieiiie et 233

SPRU187T-July 2011 Run-Time Environment 183

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

SPRU187T-July 2011

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

Memory Model

13 TEXAS
INSTRUMENTS

www.ti.com

7.1 Memory Model

The C6000 compiler treats memory as a single linear block that is partitioned into subblocks of code and
data. Each subblock of code or data generated by a C program is placed in its own continuous memory
space. The compiler assumes that a full 32-bit address space is available in target memory.

The Linker Defines the Memory Map

NOTE: The linker, not the compiler, defines the memory map and allocates code and data into

target memory. The compiler assumes nothing about the types of memory available, about
any locations not available for code or data (holes), or about any locations reserved for 1/0O or
control purposes. The compiler produces relocatable code that allows the linker to allocate
code and data into the appropriate memory spaces.

For example, you can use the linker to allocate global variables into on-chip RAM or to
allocate executable code into external ROM. You can allocate each block of code or data
individually into memory, but this is not a general practice (an exception to this is
memory-mapped /O, although you can access physical memory locations with C/C++
pointer types).

7.1.1 Sections

The compiler produces relocatable blocks of code and data called sections. The sections are allocated
into memory in a variety of ways to conform to a variety of system configurations. For more information
about sections and allocating them, see the introductory object module information in the TMS320C6000
Assembly Language Tools User's Guide.

There are two basic types of sections:

» Initialized sections contain data or executable code. The C/C++ compiler creates the following
initialized sections:

The .args section contains the command argument for a host-based loader. This section is
read-only. See the --arg_size option for details.

For EABI only, the .binit section contains boot time copy tables. For details on BINIT, see the
TMS320C6000 Assembly Language Tools User's Guide for linker command file information.

For COFF ABI only, the .cinit section contains tables for initializing variables and constants.

The .pinit section for COFF ABI, or the .init_array section for EABI, contains the table for calling
global constructor tables.

For EABI only, the .c6xabi.exidx section contains the index table for exception handling. The
.c6xabi.extabsection contains un-winded instructions for exception handling. These sections are
read-only. See the --exceptions option for details.

The .name.load section contains the compressed image of section name. This section is
read-only. See the TMS320C6000 Assembly Language Tools User's Guide for information on copy
tables.

The .ppinfo section contains correlation tables and the .ppdata section contains data tables for
compiler-based profiling. See the --gen_profile_info option for details.

The .const section contains string literals, floating-point constants, and data defined with the
C/C++ qualifiers far and const (provided the constant is not also defined as volatile).

For EABI only, the .fardata section reserves space for non-const, initialized far global and static
variables.

For EABI only, the .neardata section reserves space for non-const, initialized near global and
static variables.

For EABI only, the .rodata section reserves space for const near global and static variables.
The .switch section contains jump tables for large switch statements.
The .text section contains all the executable code.

184 Run-Time Environment SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Memory Model

7.1.2

« Uninitialized sections reserve space in memory (usually RAM). A program can use this space at run
time to create and store variables. The compiler creates the following uninitialized sections:

— For COFF ABI only, the .bss section reserves space for global and static variables. When you
specify the --rom_model linker option, at program startup, the C boot routine copies data out of the
.Cinit section (which can be in ROM) and stores it in the .bss section. The compiler defines the
global symbol $bss and assigns $bss the value of the starting address of the .bss section.

— For EABI only, the .bss section reserves space for uninitialized global and static variables.
— The .far section reserves space for global and static variables that are declared far.
— The .stack section reserves memory for the system stack.

— The .sysmem section reserves space for dynamic memory allocation. The reserved space is used
by dynamic memory allocation routines, such as malloc, calloc, realloc, or new. If a C/C++ program
does not use these functions, the compiler does not create the .sysmem section.

Use Only Code in Program Memory

NOTE: With the exception of code sections, the initialized and uninitialized sections cannot be
allocated into internal program memory.

The assembler creates the default sections .text, .bss, and .data. The C/C++ compiler, however, does not
use the .data section. You can instruct the compiler to create additional sections by using the
CODE_SECTION and DATA_SECTION pragmas (see Section 6.9.3 and Section 6.9.6).

C/C++ System Stack

The C/C++ compiler uses a stack to:
» Save function return addresses

» Allocate local variables

» Pass arguments to functions

* Save temporary results

The run-time stack grows from the high addresses to the low addresses. The compiler uses the B15
register to manage this stack. B15 is the stack pointer (SP), which points to the next unused location on
the stack.

The linker sets the stack size, creates a global symbol, Tl STACK_SIZE, and assigns it a value equal
to the stack size in bytes. The default stack size is 1K bytes. You can change the stack size at link time by
using the --stack_size option with the linker command. For more information on the --stack_size option,
see the linker description chapter in the TMS320C6000 Assembly Language Tools User's Guide.

At system initialization, SP is set to the first 8-byte aligned address before the end (highest numerical
address) of the .stack section. For C6600, SP is set to the first 16-byte aligned address. Since the position
of the stack depends on where the .stack section is allocated, the actual address of the stack is
determined at link time.

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the space
necessary for the execution of that function. The stack pointer is incremented at the exit of the function to
restore the stack to the state before the function was entered. If you interface assembly language routines
to C/C++ programs, be sure to restore the stack pointer to the same state it was in before the function
was entered.

For more information about the stack and stack pointer, see Section 7.4.

Unaligned SP Can Cause Application Crash

NOTE: The HWI dispatcher uses SP during an interrupt call regardless of SP alignment. Therefore,
SP must never be misaligned, even for 1 cycle.

SPRU187T-July 2011 Run-Time Environment 185
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Memory Model www.ti.com

7.1.3

7.1.4

7.1.5

Stack Overflow

NOTE: The compiler provides no means to check for stack overflow during compilation or at run
time. A stack overflow disrupts the run-time environment, causing your program to fail. Be
sure to allow enough space for the stack to grow. You can use the --entry_hook option to
add code to the beginning of each function to check for stack overflow; see Section 2.16.

Dynamic Memory Allocation

The run-time-support library supplied with the C6000 compiler contains several functions (such as malloc,
calloc, and realloc) that allow you to allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem section. You can set the
size of the .sysmem section by using the --heap_size=size option with the linker command. The linker also
creates a global symbol, Tl SYSMEM_SIZE, and assigns it a value equal to the size of the heap in
bytes. The default size is 1K bytes. For more information on the --heap_size option, see the linker
description chapter in the TMS320C6000 Assembly Language Tools User's Guide.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers) and the
memory pool is in a separate section (.sysmem); therefore, the dynamic memory pool can have a size
limited only by the amount of available memory in your system. To conserve space in the .bss section,
you can allocate large arrays from the heap instead of defining them as global or static. For example,
instead of a definition such as:

struct big tabl e[100];

use a pointer and call the malloc function:

struct big *table
table = (struct big *)mall oc(100*si zeof (struct big));

Initialization of Variables in COFF ABI

The C/C++ compiler produces code that is suitable for use as firmware in a ROM-based system. In such a
system, the initialization tables in the .cinit section are stored in ROM. At system initialization time, the
C/C++ boot routine copies data from these tables (in ROM) to the initialized variables in .bss (RAM).

In situations where a program is loaded directly from an object file into memory and run, you can avoid
having the .cinit section occupy space in memory. A loader can read the initialization tables directly from
the object file (instead of from ROM) and perform the initialization directly at load time instead of at run
time. You can specify this to the linker by using the --ram_model link option. For more information, see
Section 7.8.

Data Memory Models

Several options extend the C6000 data addressing model.

7.1.5.1 Determining the Data Address Model

As of the 5.1.0 version of the compiler tools, if a near or far keyword is not specified for an object, the
compiler generates far accesses to aggregate data and near accesses to all other data. This means that
structures, unions, C++ classes, and arrays are not accessed through the data-page (DP) pointer.

Non-aggregate data, by default, is placed in the .bss section and is accessed using relative-offset
addressing from the data page pointer (DP, which is B14). DP points to the beginning of the .bss section.
Accessing data via the data page pointer is generally faster and uses fewer instructions than the
mechanism used for far data accesses.

If you want to use near accesses to aggregate data, you must specify the --mem_model:data=near option,
or declare your data with the near keyword.

If you have too much static and extern data to fit within a 15-bit scaled offset from the beginning of the
.bss section, you cannot use --mem_model:data=near. The linker will issue an error message if there is a
DP-relative data access that will not reach.

186

Run-Time Environment SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Memory Model

The --mem_model:data=type option controls how data is accessed:

--mem_model:data=near Data accesses default to near
--mem_model:data=far Data accesses default to far
--mem_model:data=far_aggregates Data accesses to aggregate data default to far, data

accesses to non-aggregate data default to near. This is
the default behavior.

The --mem_model:data options do not affect the access to objects explicitly declared with the near of far
keyword.

By default, all run-time-support data is defined as far.
For more information on near and far accesses to data, see Section 6.5.4.

7.1.5.2 Using DP-Relative Addressing

The default behavior of the compiler is to use DP-relative addressing for near (.bss) data, and absolute
addressing for all other (far) data. The --dprel option specifies that all data, including const data and far
data, is addressed using DP-relative addressing.

The purpose of the --dprel option is to support a shared object model so multiple applications running
simultaneously can share code, but each have their own copy of the data.

The --dprel option is supported for ELF only.

7.1.5.3 Const Objects as Far

The --mem_model:const option allows const objects to be made far independently of the
--mem_model:data option. This enables an application with a small amount of non-const data but a large
amount of const data to move the const data out of .bss. Also, since consts can be shared, but .bss
cannot, it saves memory by moving the const data into .const.

The --mem_model:const=type option has the following values:

--mem_model:const=data Const objects are placed according to the
--mem_model:data option. This is the default behavior.

--mem_model:const=far Const objects default to far independent of the
--mem_model:data option.

--mem_model:const=far_aggregates Const aggregate objects default to far, scalar consts

default to near.

Consts that are declared far, either explicitly through the far keyword or implicitly using
--mem_model:const are always placed in the .const section.

7.1.6 Trampoline Generation for Function Calls

The C6000 compiler generates trampolines by default. Trampolines are a method for modifying function
calls at link time to reach destinations that would normally be too far away. When a function call is more
than +/- 1M instructions away from its destination, the linker will generate an indirect branch (or
trampoline) to that destination, and will redirect the function call to point to the trampoline. The end result
is that these function calls branch to the trampoline, and then the trampoline branches to the final
destination. With trampolines, you no longer need to specify memory model options to generate far calls.

SPRU187T-July 2011 Run-Time Environment 187

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Memory Model www.ti.com

7.1.7 Position Independent Data

Near global and static data are stored in the .bss section. All near data for a program must fit within 32K
bytes of memory. This limit comes from the addressing mode used to access near data, which is limited to
a 15-bit unsigned offset from DP (B14), which is the data page pointer.

For some applications, it may be desirable to have multiple data pages with separate instances of near
data. For example, a multi-channel application may have multiple copies of the same program running
with different data pages. The functionality is supported by the C6000 compiler's memory model, and is
referred to as position independent data.

Position independent data means that all near data accesses are relative to the data page (DP) pointer,
allowing for the DP to be changed at run time. There are three areas where position independent data is
implemented by the compiler:

* Near direct memory access
STW B4, *DP(_a)
.global _a
. bss _a, 4,4
All near direct accesses are relative to the DP.

* Near indirect memory access
MK (_a - $bss), A0
ADD DP, A0, AO
The expression (_a - $bss) calculates the offset of the symbol _a from the start of the .bss section. The
compiler defines the global $bss in generated assembly code. The value of $bss is the starting
address of the .bss section.
* Initialized near pointers
The .cinit record for an initialized near pointer value is stored as an offset from the beginning of the
.bss section. During the autoinitialization of global variables, the data page pointer is added to these
offsets. (See Section 7.8.5.)

188 Run-Time Environment SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Object Representation

7.2 Object Representation
This section explains how various data objects are sized, aligned, and accessed.

7.2.1 Data Type Storage
Table 7-1 lists register and memory storage for various data types:

Table 7-1. Data Representation in Registers and Memory

Data Type

Register Storage

Memory Storage

char

unsigned char

short

unsigned short

int

unsigned int

enum

float

long (EABI)

unsigned long (EABI)
long (COFF ABI)
unsigned long (COFF ABI)
__int40_t

unsigned __int40_t

long long

unsigned long long
double

long double

__x128_t (C6600 only)®
struct

array

pointer to data member
pointer to member function

Bits 0-7 of register

Bits 0-7 of register

Bits 0-15 of register

Bits 0-15 of register

Entire register

Entire register

Entire register

Entire register

Entire register

Entire register

Bits 0-39 of even/odd register pair
Bits 0-39 of even/odd register pair
Even/odd register pair

Even/odd register pair

Even/odd register pair

Even/odd register pair

Even/odd register pair

Even/odd register pair

Register quad

Members are stored as their individual types
require.

Members are stored as their individual types
require.

Bits 0-31 of register

Components stored as their individual types
require

8 bits aligned to 8-bit boundary

8 bits aligned to 8-bit boundary
16 bits aligned to 16-bit boundary
16 bits aligned to 16-bit boundary
32 hits aligned to 32-bit boundary
32 hits aligned to 32-bit boundary
32 hits aligned to 32-bit boundary
32 hits aligned to 32-bit boundary
32 hits aligned to 32-bit boundary
32 hits aligned to 32-bit boundary
64 bits aligned to 64-bit boundary
64 bits aligned to 64-bit boundary
64 bits aligned to 64-bit boundary
64 bits aligned to 64-bit boundary
64 bits aligned to 64-bit boundary
64 bits aligned to 64-bit boundary
64 bits aligned to 64-bit boundary
64 bits aligned to 64-bit boundary
128-bits aligned to 128-bit boundary

Multiple of 8 bits aligned to boundary of largest
member type; members are stored and aligned
as their individual types require.

Members are stored as their individual types
require.® All arrays inside a structure are
aligned according to the type of each element in
the array.

32 bits aligned to 32-bit boundary
64 bits aligned to 32-bit boundary

@ For details on the __ x128_t container type see Section 7.5.6.

@ For C6400, C6400+, C6740, and C6600, aligned to a 64-bit boundary. For C6200, C6700, and C6700+, aligned to a 32-bit
boundary for all types 32 bits and smaller, and to a 64-bit boundary for all types larger than 32 bits. For C6600, aligned to a

128-bit boundary.

SPRU187T-July 2011 Run-Time Environment 189

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Object Representation www.ti.com

7.2.1.1 char and short Data Types (sighed and unsigned)

The char and unsigned char data types are stored in memory as a single byte and are loaded to and
stored from bits 0-7 of a register (see Figure 7-1). Objects defined as short or unsigned short are stored in
memory as two bytes at a halfword (2 byte) aligned address and they are loaded to and stored from bits
0-15 of a register (see Figure 7-1).

In big-endian mode, 2-byte objects are loaded to registers by moving the first byte (that is, the lower
address) of memory to bits 8-15 of the register and moving the second byte of memory to bits 0-7. In
little-endian mode, 2-byte objects are loaded to registers by moving the first byte (that is, the lower
address) of memory to bits 0-7 of the register and moving the second byte of memory to bits 8-15.

Figure 7-1. Char and Short Data Storage Format
Signed 8-bit char

MS LS
S S S S S S S S S S S S S sS sS sS S s s s s s s s sis oo
31 7 0
Unsigned 8-bit char
MS LS
0o 0o o 0o 00 OOO OO OOOWOOOOOUOWOO OOOD® O OO|UUWUUUUWU
31 7 0
Signed 16-bit short
MS LS
S S S S S SsS S S Ss s s s s s s s|(s @@ 1l
31 15 0
Unsigned 16-bit short
MS LS

0o 0o o o 0O0OOO O O O O O0OOTUO O|U u U U uUuuuvuuvuuyuuuu
31 15 0
LEGEND: S = sign, | = signed integer, U = unsigned integer, MS = most significant, LS = least significant

c
c
C
c

190 Run-Time Environment SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Object Representation

7.2.1.2 enum, int, and long (EABI) Data Types (signed and unsigned)

The int, unsigned int, and enum data types are stored in memory as 32-bit objects (see Figure 7-2).
Objects of these types are loaded to and stored from bits 0-31 of a register. In big-endian mode, 4-byte
objects are loaded to registers by moving the first byte (that is, the lower address) of memory to bits 24-31
of the register, moving the second byte of memory to bits 16-23, moving the third byte to bits 8-15, and
moving the fourth byte to bits 0-7. In little-endian mode, 4-byte objects are loaded to registers by moving
the first byte (that is, the lower address) of memory to bits 0-7 of the register, moving the second byte to
bits 8-15, moving the third byte to bits 16-23, and moving the fourth byte to bits 24-31.

Figure 7-2. 32-Bit Data Storage Format
Signed 32-bit integer, or enum char

MS LS

‘ S ‘ |
31 0
Unsigned 32-bit integer

MS LS
vu Uy uvuuyvuyuuvuuvuvuuyvuyuyvuuvuuvuuyvuuyvuuyvuuyvuuyvuuyuwuyvuuvuuvuuyvuuyuuyvuuvuuvuuvuuuuwu
31 0

LEGEND: S = sign, U = unsigned integer, | = signed integer, MS = most significant, LS = least significant

7.2.1.3 float Data Type

The float data type is stored in memory as 32-bit objects (see Figure 7-3). Objects defined as float are
loaded to and stored from bits 0-31 of a register. In big-endian mode, 4-byte objects are loaded to
registers by moving the first byte (that is, the lower address) of memory to bits 24-31 of the register,
moving the second byte of memory to bits 16-23, moving the third byte to bits 8-15, and moving the fourth
byte to bits 0-7. In little-endian mode, 4-byte objects are loaded to registers by moving the first byte (that
is, the lower address) of memory to bits 0-7 of the register, moving the second byte to bits 8-15, moving
the third byte to bits 16-23, and moving the fourth byte to bits 24-31.

Figure 7-3. Single-Precision Floating-Point Char Data Storage Format

MS LS
's|/E E E E EEEEMMMMMMMMMMMMMMMMMMMMMMM
31 23 0

LEGEND: S = sign, M = mantissa, E = exponent, MS = most significant, LS = least significant

SPRU187T-July 2011 Run-Time Environment 191

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Object Representation www.ti.com

7.2.1.4 _ int40_t and COFF ABI long Data Types (sighed and unsigned)

Long and unsigned long data types are stored in an odd/even pair of registers (see Figure 7-4) and are
always referenced as a pair in the format of odd register:even register (for example, A1:A0). In little-endian
mode, the lower address is loaded into the even register and the higher address is loaded into the odd
register; if data is loaded from location 0, then the byte at O is the lowest byte of the even register. In
big-endian mode, the higher address is loaded into the even register and the lower address is loaded into
the odd register; if data is loaded from location 0, then the byte at O is the highest byte of the odd register
but is ignored.

Figure 7-4. 40-Bit Data Storage Format Signed __int40_t or 40-bit long

Odd register

MS
X ‘ S ‘ | | | | | |
31 8 7 6 0
Even register
LS
‘ | ‘ |
31 0

LEGEND: S = sign, U = unsigned integer, | = signed integer, X = unused, MS = most significant, LS = least significant

Figure 7-5. Unsigned 40-bit __int40_t or long

Odd register

MS
XXXXXXXXXXXXXXXXXXXXXXXXX’UUUUUUU
31 8 7 0
Even register

LS
‘U’UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
31 0
LEGEND: S = sign, U = unsigned integer, | = signed integer, X = unused, MS = most significant, LS = least significant
192 Run-Time Environment SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com Object Representation

7.2.1.5 long long Data Types (signed and unsigned)

Long long and unsigned long long data types are stored in an odd/even pair of registers (see Figure 7-6)
and are always referenced as a pair in the format of odd register:even register (for example, A1:A0). In
little-endian mode, the lower address is loaded into the even register and the higher address is loaded into
the odd register; if data is loaded from location 0, then the byte at 0O is the lowest byte of the even register.
In big-endian mode, the higher address is loaded into the even register and the lower address is loaded
into the odd register; if data is loaded from location 0, then the byte at 0 is the highest byte of the odd

register.

Figure 7-6. 64-Bit Data Storage Format Signed 64-bit long
Odd register

MS
‘ S ‘ |
31 0
Even register
LS
| |
0

31
LEGEND: S = sign, U = unsigned integer, | = signed integer, X = unused, MS = most significant, LS = least significant

Figure 7-7. Unsigned 64-bit long

Odd register

MS
’U’UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

31

Even register
LS

u vuuyvuuyvuuvuwuvuvuvuuvuuvuuvuwuvuwuvuuvuuyvuuvuuvuuvuuvuuvuuvuuvuuvuuvuuyvuuyvuuyvuuyuuuyvuuyvu uwu

31
LEGEND: S = sign, U = unsigned integer, | = signed integer, X = unused, MS = most significant, LS = least significant

SPRU187T-July 2011 Run-Time Environment 193

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Object Representation www.ti.com

7.2.1.6 double and long double Data Types

Double and long double data types are stored in an odd/even pair of registers (see Figure 7-8) and can
only exist in a register in one format: as a pair in the format of odd register:even register (for example,
A1:A0). The odd memory word contains the sign bit, exponent, and the most significant part of the
mantissa. The even memory word contains the least significant part of the mantissa. In little-endian mode,
the lower address is loaded into the even register and the higher address is loaded into the odd register.
In big-endian mode, the higher address is loaded into the even register and the lower address is loaded
into the odd register. In little-endian mode, if code is loaded from location 0, then the byte at O is the
lowest byte of the even register. In big-endian mode, if code is loaded from location 0, then the byte at 0 is
the highest byte of the odd register.

Figure 7-8. Double-Precision Floating-Point Data Storage Format
Odd register

31

MS
s|/E EE EEEEEEEEEMMMMMMMMMMMMMMMMMMM
20 0
Even register
LS

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

31

0

LEGEND: S = sign, M = mantissa, E = exponent, MS = most significant, LS = least significant

7.2.1.7 Pointer to Data Member Types

Pointer to data member objects are stored in memory like an unsigned int (32 bit) integral type. Its value is
the byte offset to the data member in the class, plus 1. The zero value is reserved to represent the NULL
pointer.

7.2.1.8 Pointer to Member Function Types

Pointer to member function objects are stored as a structure with three members, and the layout is
equivalent to:
struct {
short int d;
short int i;
uni on {
void (*f) ();
int 0; }
H

The parameter d is the offset to be added to the beginning of the class object for this pointer. The
parameter | is the index into the virtual function table, offset by 1. The index enables the NULL pointer to
be represented. Its value is -1 if the function is nonvirtual. The parameter f is the pointer to the member
function if it is nonvirtual, when | is 0. The 0 is the offset to the virtual function pointer within the class
object.

7.2.1.9 Structures and Arrays

A nested structure is aligned to a boundary required by the largest type it contains. For example, if the
largest type in a nested structure is of type short, then the nested structure is aligned to a 2-byte
boundary. If the largest type in a nested structure is of type long, unsigned long, double, or long double,
then the nested structure is aligned to an 8-byte boundary.

Structures always reserve memory in multiples of the size of the largest element type. For example, if a
structure contains an int, unsigned int, or float, a multiple of 4 bytes of storage is reserved in memory.
Members of structures are stored in the same manner as if they were individual objects. An array member
in a struct is aligned to the natural boundary of its elements.

194

Run-Time Environment SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

I

TEXAS

INSTRUMENTS

www.ti.com Object Representation

Top-level arrays are aligned on an 8-byte boundary for C6400, C6400+, C6740, and C6600, and either a
4-byte (for all element types of 32 bits or smaller) or an 8-byte boundary for C6200, C6700, or C6700+.
Top-level arrays are aligned on a 16-byte boundary for C6600. Elements of arrays are stored in the same
manner as if they were individual objects.

7.2.2 Bit Fields

Bit fields are handled differently in COFF ABI and EABI modes. Section 7.2.2.1 details how bit fields are
handled in all modes. Section 7.2.2.2 details how bit fields differ in EABI mode.

7.2.2.1 Generic Bit Fields

Bit fields are the only objects that are packed within a byte. That is, two bit fields can be stored in the
same byte. Bit fields can range in size from 1 to 32 bits for COFF ABI, and 1 to 64 bits in C or larger in
C++ for EABI.

For big-endian mode, bit fields are packed into registers from most significant bit (MSB) to least significant
bit (LSB) in the order in which they are defined. Bit fields are packed in memory from most significant byte
(MSbyte) to least significant byte (LSbyte). For little-endian mode, bit fields are packed into registers from

the LSB to the MSB in the order in which they are defined, and packed in memory from LSbyte to MShyte.

Figure 7-9 illustrates bit-field packing, using the following bit field definitions:

struct{
int
int
int
int
int

}x;

AO represents the least significant bit of the field A; Al represents the next least significant bit, etc. Again,
storage of bit fields in memory is done with a byte-by-byte, rather than bit-by-bit, transfer.

moom>»
©NWE N

Figure 7-9. Bit-Field Packing in Big-Endian and Little-Endian Formats

Big-endian register

MS LS
A A A A A A A BB B BBB BB B|B COCT CDTUDEE|EEEE E E E X
6 5 4 3 2 1 0 9/8 7 6 5 4 3 2 10 2 1 0 1 0o 8 7|6 5 4 3 2 1 0 X
31 0
Big-endian memory
Byte 0 Byte 1 Byte 2 Byte 3
A A A A A A A BB B B B B B B C C C D D E E E E E E X
6 5 4 3 2 1 0 9/8 7 6 5 4 3 2 10 2 1 0 1 0 8 7|6 5 4 3 2 1 0 X
Little-endian register
MS LS
X E E E E E E E|E E D D C C C B|/B B B B B B B B/B A A A A A A A
X 8 7 6 5 4 3 2|12 0 1 0 2 1 0O 9/8 7 6 5 4 3 2 1(0 6 5 4 3 2 1 0
31 0
Little-endian memory
Byte O Byte 1 Byte 2 Byte 3
B AAAAAAABBIBIBOBOBBB|EEUDUDTCT CTCUB|X EEE E E E E
o 6 5 4 3 2 1 08 7 6 5 4 3 2 1|12 0 1 0 2 1 0O 9|X 8 7 6 5 4 3 2
LEGEND: X = not used, MS = most significant, LS = least significant
SPRU187T-July 2011 Run-Time Environment 195

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Object Representation www.ti.com

7.2.2.2 EABI Bit Field Differences

Bit fields are handled differently in TIABI mode versus EABI mode in these ways:

.

In COFF ABI, bit fields of type long long are not allowed. In EABI, long long bit fields are supported.
In COFF ABI, all bit fields are treated as signed or unsigned int type. In EABI, bit fields are treated as
the declared type.

In COFF ABI, the size and alignment a bit field contributes to the struct containing it depends on the
number of bits in the bit field. In EABI, the size and alignment of the struct containing the bit field
depends on the declared type of the bit field. For example, consider the struct:

struct st

{

H

In COFF ABI, this struct takes up 1 byte and is aligned at 1 byte. In EABI, this struct uses up 4 bytes
and is aligned at 4 bytes.

In COFF ABI, unnamed bit fields are zero-sized bit fields do not affect the struct or union alignment. In
EABI, such fields affect the alignment of the struct or union. For example, consider the struct:

struct st

{

int a4

char a:4;

int :22;
H
In COFF ABI, this struct uses 4 bytes and is aligned at a 1-byte boundary. In EABI, this struct uses 4
bytes and is aligned at a 4-byte boundary.

With EABI, bit fields declared volatile are accessed according to the bit field's declared type. A volatile
bit field reference generates exactly one reference to its storage; multiple volatile bit field accesses are
not merged.

7.2.3 Character String Constants

In C, a character string constant is used in one of the following ways:

To initialize an array of characters. For example:
char s[] = "abc";

When a string is used as an initializer, it is simply treated as an initialized array; each character is a
separate initializer. For more information about initialization, see Section 7.8.

In an expression. For example:
strcpy (s, "abc");

When a string is used in an expression, the string itself is defined in the .const:string section with the
.string assembler directive, along with a unique label that points to the string; the terminating O byte is
explicitly added by the compiler. For example, the following lines define the string abc, and the
terminating 0 byte (the label SL5 points to the string):

. sect ".const:string"
CSL5: . string "abc",0

String labels have the form CSLn, where C is the compiler-generated symbol prefix and n is a
number assigned by the compiler to make the label unique. The number begins at 0 and is increased
by 1 for each string defined. All strings used in a source module are defined at the end of the compiled
assembly language module.

The label CSLn represents the address of the string constant. The compiler uses this label to
reference the string expression.

Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for a
program to modify a string constant. The following code is an example of incorrect string use:

const char *a = "abc"
a[1] = "'x'; /* Incorrect! */
196 Run-Time Environment SPRU187T—-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Register Conventions

7.3 Register Conventions

Strict conventions associate specific registers with specific operations in the C/C++ environment. If you
plan to interface an assembly language routine to a C/C++ program, you must understand and follow
these register conventions.

The register conventions dictate how the compiler uses registers and how values are preserved across
function calls. Table 7-2 summarizes how the compiler uses the TMS320C6000 registers.

The registers in Table 7-2 are available to the compiler for allocation to register variables and temporary
expression results. If the compiler cannot allocate a register of a required type, spilling occurs. Spilling is
the process of moving a register's contents to memory to free the register for another purpose.

Objects of type double, long, long long, or long double are allocated into an odd/even register pair and are
always referenced as a register pair (for example, A1:A0). The odd register contains the sign bit, the
exponent, and the most significant part of the mantissa. The even register contains the least significant
part of the mantissa. The A4 register is used with A5 for passing the first argument if the first argument is
a double, long, long long, or long double. The same is true for B4 and B5 for the second parameter, and
so on. For more information about argument-passing registers and return registers, see Section 7.4.

Table 7-2. Register Usage

Function Function
Register Preserved By Special Uses Register Preserved By Special Uses

A0 Parent - BO Parent -

Al Parent - Bl Parent -

A2 Parent - B2 Parent -

A3 Parent Structure register (pointer to a B3 Parent Return register (address to return
returned structure)® to)

A4 Parent Argument 1 or return value B4 Parent Argument 2

A5 Parent Argument 1 or return value with A4 B5 Parent Argument 2 with B4 for doubles,
for doubles, longs and long longs longs and long longs

A6 Parent Argument 3 B6 Parent Argument 4

A7 Parent Argument 3 with A6 for doubles, B7 Parent Argument 4 with B6 for doubles,
longs, and long longs longs, and long longs

A8 Parent Argument 5 B8 Parent Argument 6

A9 Parent Argument 5 with A8 for doubles, B9 Parent Argument 6 with B8 for doubles,
longs, and long longs longs, and long longs

A10 Child Argument 7 B10 Child Argument 8

All Child Argument 7 with A10 for doubles, B11 Child Argument 8 with B10 for doubles,
longs, and long longs longs, and long longs

Al12 Child Argument 9 B12 Child Argument 10

A13 Child Argument 9 with A12 for doubles, B13 Child Argument 10 with B12 for doubles,
longs, and long longs longs, and long longs

Al4 Child - B14 Child Data page pointer (DP)

A15 Child Frame pointer (FP) B15 Child Stack pointer (SP)

A16-A31 Parent C6400, C6400+, C6700+, C6740, B16-B31 Parent C6400, C6400+, C6700+, C6740,

and C6600 only and C6600 only

ILC Child C6400+, C6740, and C6600 only, NRP Parent
loop buffer counter

IRP Parent RILC Child C6400+, C6740, and C6600 only,

loop buffer counter

@ For EABI, structs of size 64 or less are passed by value in registers instead of by reference using a pointer in A3.

SPRU187T-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Run-Time Environment 197

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Function Structure and Calling Conventions www.ti.com

7.4

7.4.1

All other control registers are not saved or restored by the compiler.

The compiler assumes that control registers not listed in Table 7-2 that can have an effect on compiled
code have default values. For example, the compiler assumes all circular addressing-enabled registers
are set for linear addressing (the AMR is used to enable circular addressing). Enabling circular addressing
and then calling a C/C++ function without restoring the AMR to a default setting violates the calling
convention. You must be certain that control registers which affect compiler-generated code have a default
value when calling a C/C++ function from assembly.

Assembly language programmers must be aware that the linker assumes B15 contains the stack pointer.
The linker needs to save and restore values on the stack in trampoline code that it generates. If you do
not use B15 as the stack pointer in assembly code, you should use the linker option that disables
trampolines, --trampolines=off. Otherwise, trampolines could corrupt memory and overwrite register
values.

Function Structure and Calling Conventions

The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time support
functions, any function that calls or is called by a C/C++ function must follow these rules. Failure to adhere
to these rules can disrupt the C/C++ environment and cause a program to fail.

For details on the calling conventions in EABI mode, refer to The C6000 Embedded Application Binary
Interface Application Report (SPRAB89).

How a Function Makes a Call
A function (parent function) performs the following tasks when it calls another function (child function).

1. Arguments passed to a function are placed in registers or on the stack.
A function (parent function) performs the following tasks when it calls another function (child function):

If arguments are passed to a function, up to the first ten arguments are placed in registers A4, B4, A6,
B6, A8, B8, A10, B10, A12, and B12. If longs, long longs, doubles, or long doubles are passed, they
are placed in register pairs A5:A4, B5:B4, A7:A6, and so on.

However, for C6600, if one or more __ x128 t arguments are passed, the next _ x128 t argument is
passed in the first available quad, where the list of available quads has the ordering: A7:A6:A5:A4,
B7:B6:B5:B4, A11:A10:A9:A8, B11:B10:B9:B8. If there are no more available quads, the _ x128 t
goes onto the stack. A subsequent 32-bit, 40-bit, or 64-bit argument can take the first available register
or register pair even if an earlier _ x128_t argument has been put on the stack.

Any remaining arguments are placed on the stack (that is, the stack pointer points to the next free
location; SP + offset points to the eleventh argument, and so on, assuming for C6600 an __ x128 _t s
not passed.) Arguments placed on the stack must be aligned to a value appropriate for their size. An
argument that is not declared in a prototype and whose size is less than the size of int is passed as an
int. An argument that is a float is passed as double if it has no prototype declared.

A structure argument is passed as the address of the structure. It is up to the called function to make a
local copy.

For a function declared with an ellipsis indicating that it is called with varying numbers of arguments,
the convention is slightly modified. The last explicitly declared argument is passed on the stack, so that
its stack address can act as a reference for accessing the undeclared arguments.

Figure 7-10 shows the register argument conventions.

2. The calling function must save registers A0 to A9 and BO to B9 (and A16 to A31 and B16 to B31 for
C6400, C6400+, and C6700+), if their values are needed after the call, by pushing the values onto the
stack.

3. The caller (parent) calls the function (child).

4. Upon returning, the caller reclaims any stack space needed for arguments by adding to the stack
pointer. This step is needed only in assembly programs that were not compiled from C/C++ code. This
is because the C/C++ compiler allocates the stack space needed for all calls at the beginning of the
function and deallocates the space at the end of the function.

198

Run-Time Environment SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS

INSTRUMENTS
www.ti.com Function Structure and Calling Conventions
Figure 7-10. Register Argument Conventions
int funcl(int a, int b, int c);
A4 A4 B4 A6
int func2(int a, float b, int c) struct A d, float e, int £, int g);
A4 A4 B4 A6 B6 A8 B8 A10
int func3(int a, double b, float c) long double d);
A4 A4 B5:B4 A6 B7:B6

/*NOTE: The following function has a variable number of arguments. */

int vararg(int a, int b, int ¢, int d);

A4 A4 B4 A6 stack

struct A func4(int y);

A3 A4

_ x128 t func5(_ x128 t a);

A7:AG:A5:A4 AT7:A6:A5:A4

void funcé(int a, int b, _ x128 t c);
A4 B4 A11:A10:A9:A8

void func7(int a, int b, _ x128 t c, int d, int e, int £, _ x128 t g, int h);
A4 B4 A11:A10:A9:A8 A6 B6 B8 stack B10

7.4.2 How a Called Function Responds

A called function (child function) must perform the following tasks:

1. The called function (child) allocates enough space on the stack for any local variables, temporary
storage areas, and arguments to functions that this function might call. This allocation occurs once at
the beginning of the function and may include the allocation of the frame pointer (FP).

The frame pointer is used to read arguments from the stack and to handle register spilling instructions.
If any arguments are placed on the stack or if the frame size exceeds 128K bytes, the frame pointer
(A15) is allocated in the following manner:

(&) The old A15 is saved on the stack.

(b) The new frame pointer is set to the current SP (B15).

(c) The frame is allocated by decrementing SP by a constant.

(d) Neither A15 (FP) nor B15 (SP) is decremented anywhere else within this function.

If the above conditions are not met, the frame pointer (A15) is not allocated. In this situation, the frame
is allocated by subtracting a constant from register B15 (SP). Register B15 (SP) is not decremented
anywhere else within this function.

2. If the called function calls any other functions, the return address must be saved on the stack.
Otherwise, it is left in the return register (B3) and is overwritten by the next function call.

3. If the called function modifies any registers numbered A10 to A15 or B10 to B15, it must save them,
either in other registers or on the stack. The called function can modify any other registers without
saving them.

4. If the called function expects a structure argument, it receives a pointer to the structure instead. If
writes are made to the structure from within the called function, space for a local copy of the structure
must be allocated on the stack and the local structure must be copied from the passed pointer to the
structure. If no writes are made to the structure, it can be referenced in the called function indirectly
through the pointer argument.

SPRU187T-July 2011 Run-Time Environment 199

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

Function Structure and Calling Conventions www.ti.com

7.4.3

You must be careful to declare functions properly that accept structure arguments, both at the point
where they are called (so that the structure argument is passed as an address) and at the point where
they are declared (so the function knows to copy the structure to a local copy).

5. The called function executes the code for the function.

6. If the called function returns any integer, pointer, or float type, the return value is placed in the A4
register. If the function returns a double, long double, long, or long long type, the value is placed in the
A5:A4 register pair. For C6600 if the function returns a _ x128_t, the value is placed in A7:A6:A5:A4.

If the function returns a structure, the caller allocates space for the structure and passes the address of
the return space to the called function in A3. To return a structure, the called function copies the
structure to the memory block pointed to by the extra argument.

In this way, the caller can be smart about telling the called function where to return the structure. For
example, in the statement s = f(x), where s is a structure and f is a function that returns a structure, the
caller can actually make the call as f(&s, x). The function f then copies the return structure directly into
s, performing the assignment automatically.

If the caller does not use the return structure value, an address value of O can be passed as the first
argument. This directs the called function not to copy the return structure.

You must be careful to declare functions properly that return structures, both at the point where they
are called (so that the extra argument is passed) and at the point where they are declared (so the
function knows to copy the result).

7. Any register numbered A10 to A15 or B10 to B15 that was saved in is restored.

8. If A15 was used as a frame pointer (FP), the old value of A15 is restored from the stack. The space
allocated for the function in is reclaimed at the end of the function by adding a constant to register B15
(SP).

9. The function returns by jumping to the value of the return register (B3) or the saved value of the return
register.

Accessing Arguments and Local Variables

A function accesses its stack arguments and local nonregister variables indirectly through register A15
(FP) or through register B15 (SP), one of which points to the top of the stack. Since the stack grows
toward smaller addresses, the local and argument data for a function are accessed with a positive offset
from FP or SP. Local variables, temporary storage, and the area reserved for stack arguments to functions
called by this function are accessed with offsets smaller than the constant subtracted from FP or SP at the
beginning of the function.

Stack arguments passed to this function are accessed with offsets greater than or equal to the constant
subtracted from register FP or SP at the beginning of the function. The compiler attempts to keep register
arguments in their original registers if optimization is used or if they are defined with the register keyword.
Otherwise, the arguments are copied to the stack to free those registers for further allocation.

For information on whether FP or SP is used to access local variables, temporary storage, and stack
arguments, see Section 7.4.2. For more information on the C/C++ System stack, see Section 7.1.2.

200

Run-Time Environment SPRU187T-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU187T

13 TEXAS
INSTRUMENTS

www.ti.com

Interfacing C and C++ With Assembly Language

7.5 Interfacing C and C++ With Assembly Language

The following are ways to use assembly language with C/C++ code:

3

Use separate modules of assembled code and link them with compiled C/C++ modules (see
Section 7.5.1).

Use assembly language variables and constants in C/C++ source (see Section 7.5.2).
Use inline assembly language embedded directly in the C/C++ source (see Section 7.5.4).
Use intrinsics in C/C++ source to directly call an assembly language statement (see Section 7.5.5).

7.5.1 Using Assembly Language Modules With C/C++ Code

Interfacing C/C++ with assembly language functions is straightforward if you follow the calling conventions
defined in Section 7.4, and the register conventions defined in Section 7.3. C/C++ code can access
variables and call functions defined in assembly language, and assembly code can access C/C++
variables and call C/C++ functions.

Follow these guidelines to interface assembly language and C:

.

All functions, whether they are written in C/C++ or assembly language, must follow the register
conventions outlined in Section 7.3.

You must preserve registers A10 to A15, B3, and B10 to B15, and you may need to preserve A3. If
you use the stack normally, you do not need to explicitly preserve the stack. In other words, you are
free to use the stack inside a function as long as you pop everything you pushed before your function
exits. You can use all other registers freely without preserving their contents.

A10 to A15 and B10 to B15 need to be restored before a function returns, even if any of A10 to A13
and B10 to B13 are being used for passing arguments.

Interrupt routines must save all the registers they use. For more information, see Section 7.6.

When you call a C/C++ function from assembly language, load the designated registers with
arguments and push the remaining arguments onto the stack as described in Section 7.4.1.

Remember that only A10 to A15 and B10 to B15 are preserved by the C/C++ compiler. C/C++
functions can alter any other registers, save any other registers whose contents need to be preserved
by pushing them onto the stack before the function is called, and restore them after the function
returns.

Functions must return values correctly according to their C/C++ declarations. Integers and 32-bit
floating-point (float) values are returned in A4. Doubles, long doubles, longs, and long longs are
returned in A5:A4. For C6600 _ x128_t values are returned in A7:A6:A5:A4. Structures are returned by
copying them to the address in A3.

No assembly module should use the .cinit section for any purpose other than autoinitialization of global
variables. The C/C++ startup routine assumes that the .cinit section consists entirely of initialization
tables. Disrupting the tables by putting other information in .cinit can cause unpredictable results.

The compiler assigns linknames to all external objects. Thus, when you are writing assembly language
code, you must use the same linknames as those assigned by the compiler. See Section 6.12 for more
information.

Any object or function declared in assembly language that is accessed or called from C/C++ must be
declared with the .def or .global directive in the assembly language modifier. This declares the symbol
as external and allows the linker to resolve references to it.

Likewise, to access a C/C++ function or object from assembly language, declare the C/C++ object with
the .ref or .global directive in the assembly language module. This creates an undeclared external
reference that the linker resolves.

The SGIE