TMS320C6000 Assembly Language Tools
v 7.3

User's Guide

I3 TExXAS

INSTRUMENTS

Literature Number: SPRU186V
July 2011

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS

Contents

=T =T = 11
1 Introduction to the Software Development TOOIS ..ouiiiiiiiiiii e 15
11 Software Development TOOIS OVEIVIEWuuiiruseiiteiseersre et saterainssannsrnnes 16

1.2 B0 L0 3 I 7= o] (o] TN 17

2 Introduction t0 ODJECE MOAUIESnini et et e e e e e e e e e e 19
21 ST o] 10} 3 20

2.2 How the Assembler HandIes SECHONS .. .uuuiueeiteiiiriire it s rs s sa s s aanerans 21

pZZ R U 11 1 (==Y IS =T ox 1T L 21

P22 1411 1= 14T o ST ot 1o gL 22

227 T = 10 10 RS- o 10 L 23

B S U o 1= =Y o 1 o 23

2.2.5 SecCtion Program COUNTEIS ..uiuuueesseaussesseanneessaannnesssaanneessesnneessssnssesssssnnesssssnneessssnnnes 24

2.2.6 USING SECHONS DIrECHVES uutiustiseiineiisseiasterastssas e tass st s ssin s sasssaaresaneasanns 24

2.3 How the LinKer HandIes SECHONSuueiiiiiiiteiiiiitee it aae s rr e s ss s e s s s ann e s saaanna s s sannnnesss 27

2.3.1 Default Memory AllOCatiON ..uiiueeesiiiie e seeieessaaanressaaanneessaanneessaansnesssannnesssssnneessssnnnes 27

2.3.2 Placing Sections in the Memory Mapuveeireeiiserieriririsrss s ssinr s 28

2.4 = (o o= 11) o 28

25 RUN-TIME REIOCALION +1uuisiitiisiiiieer et r et a e aanens 30

2.6 o = Vo [T To = 0T > 30

2.7 3Vl oTo] E T I= T IO o] 1T o A 31

2 A R 4 (=Y 1 = IS} Y 4 oL P 31

2.8 Object File Format SPeCifiCatiONS ..uuiuueiiseiiiri e 32

3 F ST YT o 0] oY =T I 1= of g o) o o 33
3.1 E Yo 0] 0] =T G Y= = 34

3.2 The Assembler's Role in the Software Development FIOWvvveviiiiiiiiiiiiiiiii e 35

3.3 INVOKING the ASSEMIDIET ..ttt ettt e e s st e st st e st saann e e s saan e e s saannneessannneennn 36

3.4 Controlling Application Binary INtErfaCeiveieieiiiiiiiiiii i s rrairr s aanes 37

3.5 Naming Alternate Directories for ASSembIer INPULeeeeiiieeiii i s raas 37

3.5.1 Using the --include_path Assembler OPtioNiiieeiiiiriiiri i 38

3.5.2 Using the C6X_A_DIR Environment Variableccviiiiiiiiiiiiiiiii s iaees 38

3.6 Yo 0 oIS ¥= 1= 0 =T [0] 1 T 40

B G 200 R I o T I = (o 41

G 20 /1 T= o 0o ool = o 41

3.6.3 Unit SPeCifier FIEld ...uuietiiiiiii i e e 42

G20 A @ o =T = g o N 1= [42

G G 85T @ 010 1T | = o 42

3.7 [0 0] 151 = 43

R A R = 11 = Y [1 (= o =T 43

T 7 © Lol r= I [] (=0T 43

TR G T I 1= o] . o g1 (=TT 43

I A A o 1501z Lo [=Tod T g F= U T (=0T 44

T AT O == Tox 1] G @0 1] ¢=) 44

3.7.6 ASSEMDIY-TIME CONSIANTS .uuuueiteiineerte it e e s s s rs s e e s e e s s r e saneaanes 44

3.8 (3 =T = o1 (=T S 00 45

3.9 077101010 45
SPRU186V-July 2011 Contents 3

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com
0 TR TN I L= 45
3.9.2 LOCAl LADEIS .ueiitiiii i 45
3.9.3 SYMDOIIC CONSIANTS 4uuuuueteeiiistsetiiisaee st sr e e s s s s e s s s aate st s aaa e et ssanan s s asaaanssssannnnes 48
3.9.4 Defining Symbolic Constants (--asm_define OPtion)cvvieeiiiiiiiiiiiriiiiiieaaeees 48
3.9.5 Predefined Symbolic CONSLANTS ...uueiiseirstiriseiieri i sareaannens 49
SN G =T 0 L] (] = V] £ 51
3.9.7 Register QUads (CH600 ONIY) .uuuruueirunrirnneinuneraseernreriae i rass sttt sanre e 52
3.9.8 SUDBSHItULION SYMDOIS .ueistiiiir s 52
B 0 0T o o] 111 o L 53
B 0 00t] = = 0] £ 53
3.10.2 Expression Overflow and UNderflowoeeeiiiiiiii i e e s r e e e a e s 53
3.10.3 Well-Defined EXPrESSIONS 1uuiuuuueetirusnesiasneessainnssssaanssessaasssssssassestsasnnestssinnnsssssnnnes 54
1 0 K0 1 S @70 o 1110 i F= L T q 0 £ =7 T] 54
3.10.5 Legal EXPrESSIONS ...uuuuueseiinaeesiaannessaaaneessaaantesssaantaessaannsessaannnesssaannessssannnssssnnnnes 54
3.10.6 EXPreSSion EXAMPIES . ..uueiiiiutseiiiisteeiisstesssaiessssaisse s ssanstesssaasssssssassnssasannssssannnnes 55
3.11 Built-in FUNCHONS @Nd OPEIAOrS uueiuuseiuesistssarerseises s st ssasssaisssantssassssasstsinssasssannens 56
3.11.1 Built-In Math and TrigonOMEetric FUNCLONSceiiiiiiiiiiiiie i r e s s ane e s s ann e e anannns 56
3.11.2 COHX BUIlt-IN OPEIAtOrS . uuuseiiiiuseesiiseeessaiae s ssaassse s saassestsaassestsaannssssannnssssannnes 57
01 17 T T | o 1 1o 61
3.13 Debugging ASSEMDIY SOUICE .. .uuiiieeeiaaieesaaaante s saante s ssaaate st saansasssaannessaannnssssannesssannnnessn 63
3.14 CroSS-ReferenCe LiSHNGS wuuuiuuuueetiiuseeiisiaeesssiianeessassessaastsestaasssstaannssssasanssssaannnessannnnesins 64
ASSEMDIEN DIFECTIVES vttt et 65
4.1 DiIrECHIVES SUMMAIY . utuatiiuae e it s ats s s e e s s e s e st e e s s et s s e s s e e s e e sa s s s a e s s a e aa s e nannesannsras 66
4.2 Directives That Define SECHONS ...uiiueiiiiiiiiiiii i i i raareras 70
4.3 Directives That Initialize CONSLANTS +.uuvuseiueiiseriiserrir s rae 72
4.4 Directives That Perform Alignment and RESEIVE SPACEivieiiiiseiiireiiiii i aaanraas 73
45 Directives That Format the OULPUL LISHINGS .. .ueeiiietreiiiiteiiiine s riiee s ssaier s ssainne s ssannns s rannnnesss 74
4.6 Directives That Reference Other FileS ...uuiuuiisiiiiiiiiiiii i aes 75
4.7 Directives That Enable Conditional ASSEMDIYueiiieiiiiii i e raarenas 76
4.8 Directives That Define Union OF StrUCIUIE TYPES .uueieiiiineteriiiiesisiinsesssaisessssannrsssaaannresaaannsesins 76
4.9 Directives That Defing ENUMEIatEd TYPES .uuueeerieinneerreinntesseanseesssannnesssssnneesssssnnesssssnnressssnnnessnn 77
4.10 Directives That Define Symbols at ASSEMDIY TiMEviuiiiiiiiiiii i s 77
4.11 MiSCEllaNEOUS DIrECHIVES 1.uutiuseiisstiisttisterseissttasse ittt sa s e rase sttt et raneranneranes 78
4.12 DireCtives REfEIENCE ..uuiusiiutiueiiseitiis s s r st e s et e r e anens 79
Y= Loy o T =T of T] o o PP 143
5.1 L1 1S3 T 1Y/ = Vo o1 144
5.2 972 11 T o 1Y = T L 144
5.3 Macro Parameters/Substitution SYMDOISueiiiiii i 146
5.3.1 Directives That Define Substitution SYmMDOISvviuiiiiiiiiiii e 147
5.3.2 Built-In Substitution Symbol FUNCHONS ..uuiiieesiiiiieiiiis i s sssiae s sssinnssasannes 148
5.3.3 Recursive Substitution SYMDOISciiueiiiiiiiii i 149
ST J N o T =0 BT 0] 011 1111 (0] o 149
5.3.5 Accessing Individual Characters of Subscripted Substitution Symbolsccoviviiiiiiiiiiiinnns. 150
5.3.6 Substitution Symbols as Local Variables in MacrOSuvveereriiiieeiraainersaainnesraannneeraannnes 151
5.4 Y=Y I o = 1= 151
5.5 Using Conditional ASSEMDBIY iN MaACIOS ..ueiiiuueeiiiiiinteeiriiresraire s raieesasairs s asaannssssaannrsssaannes 152
5.6 LS To I o T= RS T 1Y T (0 154
5.7 Producing MeSSages iN MaACKIOSuuuueeiiiiteeiiaiete s saaante s ssaaate st saannesssaannsssaaannrsssaannnasssannnnesss 155
5.8 Using Directives to Format the OUIPUL LISTING ..evvvieeeiiiiiieiiiis i s sssise s ssnansnsaasannns 156
5.9 Using Recursive and NeStEd MaACIOS ..vuuueiiueeiiniisinterseiaes it ianessasssaats e sannssannssanns 157
5.10 MaCro Dir€CtIVES SUMIMAIY tuuuustustsrusstsusesassssassesassesasstssssasetanesassssassssasstannssasnssannsraessnns 159
F N o g 1AV B Tt T o] o o P 161
Contents SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com
6.1 N (o] Y G @ Y= = 162
6.2 The Archiver's Role in the Software Development FIOWooiiiriiiii i i rraaeeeeas 163
6.3 INVOKING The AFCNIVET . uueti i r st s e e s s e s s s n s e s s anan e s sannnenss 164
6.4 ATCRIVEN EXBMPIES 1 uutiitiiiiti ittt e s e e e e 165
6.5 Library Information Archiver DeSCHPLIONeiiiiitei it r e s s s s s anr e s anr e e s raannness 166
6.5.1 Invoking the Library Information ArChiveroiiiiiiiiiiii i i i 166
6.5.2 Library Information Archiver EXamplec.eiiieeiiiieiiiini s ss i s e ennns 167
6.5.3 Listing the Contents of an INdeX LIDraryeoeiiiiiiiiiiiii i r e s r e e ananees 167
LT A =T o U1 =T o 4= 0 £ 167
7 (1] T D 1YY od AT o] 1o o PRSPPI 169
7.1 [T S O YT 1= 170
7.2 The Linker's Role in the Software Development FIOWcoiiiiiiiiiiiiiii i e e 171
7.3 INVOKING The LINKET ettt st s i e e s s e e s s e e s e aa e e e s sanne e s saannn e s saannnesssnnnnnessannnnessannnnnsss 172
7.4 2= o 1o 173
7.4.1 Wild Cards in File, Section, and Symbol Patternscooeieiiiiiiniiiiiiiiiiiinniineesnnnes 176
7.4.2 Relocation Capabilities (--absolute_exe and --relocatable Options)ccevviiiiiieiiiiieeerinnnnens 176
7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)ceevvuevvunens 177
7.4.4 Compression (--cinit_compression and --copy_compression OPtioN)ccceevvvvieeriiiiineeirninnss 177
7.4.5 Control LINKEr DIagNOSHICS +euuuuueeesseineessssnneeessannneessasnnnessssnnnesssssnneessssnnnessssnnnesssnnnes 178
7.4.6 Disable Automatic Library Selection (--disable_auto_rts Option)vvvevvieiiiierinieeiininnens 178
7.4.7 Controlling Unreferenced and UNUSEd SECLIONSueiiiiiiiiiiiiiiieriiires s saainnesaaaanness 178
7.4.8 Link Command File Preprocessing (--disable_pp, --define and --undefine Options) 179
7.4.9 Define an Entry Point (--entry_point OPtioN) w.uueevseiseerisssrireriseiinseasssinssrise e 180
7.4.10 Set Default Fill Value (--fill_value OPtiON)eeiiiiieieiiiieeinies s ssaiassssaannssaaannns 180
7.4.11 Define Heap Size (--heap_Siz€ OPtiON) ..uiiiieeeiieiiesiiasesssasseesssasnneessasnnnessasnnnesesnnnnes 180
7.4.12 HidiNg SYMDOIS . utineiiiii s 181
7.4.13 Alter the Library Search Algorithm (--library Option, --search_path Option, and C6X_C_DIR
ENVIroNmMeNnt Variable)eceiiiiieiiiii i s e i e s se s s saa e e s aaan e e raan e aaanes 182
7.4.14 Change Symbol LOCANIZAtION ..viuuseiiueeiistiiisirseisiee s s s e raneaanes 184
7.4.15 Create a Map File (--map_file Option) ...oiiieieiiiii i i s r e aaanes 185
7.4.16 Managing Map File Contents (--mapfile_contents Option)iceeeeeiiiiiieeiiiiiriiierannnees 186
7.4.17 Disable Name Demangling (--N0_demangle)eivieeiiueerinnerineiiieiirire i 188
7.4.18 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)cccevvvinnnnn. 188
7.4.19 Strip Symbolic Information (--no_sym_table Option)uiiveeeeiiiies i i saninneesaaannees 189
7.4.20 Name an Output Module (--output_file OPtioN)eeviueiiieiiiiii i e 189
7.4.21 Prioritizing Function Placement (--preferred_order Option)ooceeeiiiiiiniiiiii e 189
7.4.22 C Language Options (--ram_model and --rom_model OPtioNS)cvviiiiereriiiinneerssinneeresnnnees 189
7.4.23 Retain Discarded Sections (--retain OPtioN) wuuuevvseieeerissririe i raneanns 190
7.4.24 Create an Absolute Listing File (--run_abs Option)cvviiiiiiiiiiiiiii i i nnaes 190
7.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)cccvvviiieriiiiiineerinnnnns 190
7.4.26 Define Stack Size (--Stack_Size OPLON) w.ueviiurerseiiierire i 190
7.4.27 Enforce Strict Compatibility (--strict_compatibility Option)vveieeeiiiiiiiiiiii e 191
7.4.28 Mapping of Symbols (--symbol_map OPtion) ...ceiiiieiiiiiiiii i reiie e raninreesaaanneeraannnes 191
7.4.29 Generate Far Call Trampolines (--trampolines OPtioN)ueeviureiiseiiieeii i, 191
7.4.30 Introduce an Unresolved Symbol (--undef_sym Option)evviiiieiiiiiiiiiiiii i ennanees 193
7.4.31 Display a Message When an Undefined Output Section Is Created (--warn_sections Option) 193
7.4.32 Generate XML Link Information File (--xmI_link_info OPption)c.vviieiiiiiiiiniiiinnens 194
7.4.33 Zero Initialization (--zero_init OPLtioN) . ..eeiiieeeiiiii s rrie e rarirs s raanr e aaanns 194
7.5 Linker Command FileSuiiuiieiisiiir e 195
7.5.1 Reserved Names in Linker Command FileSuviiueiiiiiiiiiiiiiii s nnes 196
7.5.2 Constants in Linker Command FileSiiiiiieiiiiiii i i s st saaann s aaanns 196
7.5.3 The MEMORY Dir€CHVE uuiusuiutiusinseiuninsisseissssersiassraesassastriesasssrrassaserarsaressrnnsanenns 197
7.5.4 The SECTIONS DIFECHVE .uuuiuueiuseiannersnssssssseiaserassssiassrasstans e rannssannesanns 199
SPRU186V-July 2011 Contents 5

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com
7.5.5 Specifying a Section's RUN-TIME AGArESS ..uuvuuiirteiiieeii i asir i raeesanns 214
7.5.6 Using UNION and GROUP StatemMeNtSiuuueieriiieteeiraantesssaanneessaannessaannessaannnesssannnes 216
7.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT) ..ueviiiiiereiriinneriiiinesinainneess 220
7.5.8 Assigning Symbols at Link TiMe ...ueiieiiiiiiiiiiiii i s r s e sanes 221
7.5.9 Creating and FilliNg HOIESnueiiiiiiii st r e s r s sannnr e s aanns 226
7.6 (] o)1= S I o = 4T 229
7.7 Default Allocation AlGOITNM ... e s e s 230
7.7.1 How the Allocation Algorithm Creates OUtPUL SECHIONSeviiiiiiieiiiiir i raannees 230
7.7.2 Reducing Memory Fragmentationc..eeeussiesesssistseirainnsessanssessssaisnssssannnssssaannrsssannnns 231
7.8 Linker-Generated CopY TableS . ..uiiuiiiiiiiiiiie i e et r e 231
7.8.1 A Current Boot-Loaded Application Development PrOCESS ...ivuiivieeiiiterissiiinririseiinneraeininns 231
AR S N g N 1 =T 1 F= Y Y]] F= o o 232
7.8.3 Overlay Management EXampleoiiieiiiiiiie i s 233
7.8.4 Generating Copy Tables Automatically With the LinKercoiiiiiiiiiiiiiiiiii i 233
A S R T I 1= = o] =T (T o =T = 0 234
7.8.6 BOOt-Time COPY TabIES .uuiiieiiiitiiiii i s s e s et nns 235
7.8.7 Using the table() Operator to Manage Object COMPONENTSuviiieieririieeiiaiireraaainneeaaanns 235
7.8.8 COMPIreSSION SUPPOM tuuuutesisusnessssusnessssassesssassssssanssesssaassnssssassnssssssnnsessssnnnesssnnnns 236
7.8.9 Copy Table CONtENES .uuiuuutiiteiiteiiri et e s s s a s s a e e tan s rannannns 239
7.8.10 General PUrpPOSE COPY ROULINE ...iiuueeiiiiiiteiiaaaetesssaaates s saantesssaannesasannessaanneessannnes 240
7.8.11 Linker-Generated Copy Table Sections and SYmbOoISccevviiiiiiiiiiiiiiiiii e 241
7.8.12 Splitting Object Components and Overlay Managementvveeeeeerieieeerrrainneersaannneraaannnes 242
7.9 Partial (INncremental) LINKINGooieeeiiiiie et e s s aae e s s e e e s sa e s s ssann it e s sannasssaannnessn 244
7.10 LiNKING C/CH+ COOE 1iuuuuieiiiuteiisnaes st sssaiane s ssaas et saaaatesssaassestassssessssannnssssasnnnessannnns 245
7.10.1 RUN-TIMe INItIAlIZAON +tuuueiiee it et s s s s s a e s e e s e e nns 245
7.10.2 Object Libraries and RUN-TIME SUPPOIT . .uuuiueeriuteiineirinririsssaseiisesassiaisssasseanrerasiannns 246
7.10.3 Setting the Size of the Stack and Heap SECHONScvviiiiiiiiiiiiiiiiiiii i i aninees 246
7.10.4 Autoinitialization of Variables at RUN TIMEuviiiiiiiiiiiiii s anees 246
7.10.5 Initialization of Variables at Load TiMe ..v.euvieririieiiiiiri i 246
7.10.6 The --rom_model and --ram_model Linker OPtioNSiiieieiiiiiieniiiiiiiiisnsiinnsaasanns 247
4 R I g =T G o] o 248
7.12 Dynamic Linking with the C6000 Code Generation TOOISueiiiiieeeriiiiieerraaineeraainresaaanreraaannes 251
7.12.1 Static VS DYNamiC LINKING .ouuuueeiiiiieiii i s s st s s s s as s s 251
7.12.2 Embedded Application Binary Interface (EABI) Requiredcciveeiiiiiiiiiiiiiiiiiiiiiienanes 252
7.12.3 Bare-Metal Dynamic LINKING MOEIooiinneii it e r e s s e e e raannes 252
7.12.4 Building a Dynamic EXecutablec.eeiiiiiiiiiiiii i i 254
7.12.5 Building @ DYN@micC LIDIAryeueeeiieerieirisineiasiss s ssss s sassssnn s ssnsssannesansssannss 255
7.12.6 SymbBOl IMPOI/EXDPOIT wuuusisustiteiaseessessse et ssesan e e s s rssaasranerannasanns 257
8 ADSOIULE LiSTer DESCIIPION ettt ettt ettt e et e et e et e e e e ea e e ee e e eneaenees 261
8.1 Producing an ADSOIULE LiSTING . uueviieeesiisieeessainneessaanneessaannnesssansnesssannnesssssnnressssnnnessssnnnnnsss 262
8.2 INVOKING the ADSOIULE LISTEI . uutstiitirist e r e e s s e s r e e nns 263
8.3 Y o110 0 (N 1S3 (T g = 0] o] = 264
9 Cross-Reference LisSter DESCIIPIION .iuiiiiiiiiiiii et e s e e e eaaas 267
9.1 Producing a Cross-Reference LiStNG ..u..ueiveriiseiieiisiri st ass s e ssissssassansranasanns 268
9.2 INVOKING the CroSS-RefEreNCe LSOl ...t iiii i rarre s saaane s s aaan e s s aaanr e s saanneeesn 269
9.3 Cross-Reference LiSting EXAMPIE ..uviiuueieiiiiteeiiiississiies st ssaisnsssaaasne s ssassesssanssessannns 270
10 (O] o 1Yot S LT 4] L = PP PPRRPSPR 271
10.1 Invoking the Object File Display ULIlityeuvieeiieeiieiiiriri s snes 272
10.2 INVOKING the DiSASSEMDIET ... ueei ittt it e st s e st s s e s saaaa e s s saann s s ssann e s s sannnnesss 273
10.3 INVOKING the NamME Uity .uiiieeeisiiie e ssii e s eseesssaaee s s sanne e s saanneessaannnesssannneessannnnessannnnenss 273
10.4 InvOKING the Strip ULIIY . .ueuiueeiieeiiii i s s s s r e s r s asnns 274
11 Hex Conversion Utility DESCIIPLION ..veiiiiiiie e et e e e e e e e 275
6 Contents SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS

www.ti.com
11.1 The Hex Conversion Utility's Role in the Software Development FIOWoovviiiiiiiiiiiiiiiiiiiaaens 276
11.2 Invoking the Hex Conversion ULIITYooeeeoiiii s e rr e s s s ins e sssann e s snanr e e s snnneenas 277
11.2.1 Invoking the Hex Conversion Utility From the Command Lineccccevviiiiiiiiiiiiiiienininnnens 277
11.2.2 Invoking the Hex Conversion Utility With a Command Fileccoviiiiiiiiiiiiiiiiiieees 279
11.3 Understanding Memory WIdIhSeiiiiiiiiiii it e e s s r e e s s s e e s s anr e s sranneess 280
B 00 700 T = T o = T o 1 o 280
11.3.2 Specifying the Memory Widthoeeiiiiii i e 281
11.3.3 Partitioning Data INto OULPUL FIlES ...eeii i r e s nr e e e ranne e 282
11.3.4 Specifying Word Order for OUIPUL WOTTS ...ueeeiiieissiiiiieeiiiiieeissiisssssiiasressannsssssaannnesss 284
5 0 N T L@ 1Y I =) 284
11.4.1 When to Use the ROMS DiIr€CHVE ...uuiiiutiiiutirissiiisisseiaiesrassssiane e raneasinns 285
11.4.2 An Example of the ROMS DIreCHVE ..uviiiueiseiiiiieeiiiiieeiisiiesssiinersssainressannsnesssannnesss 286
11.5 The SECTIONS DIrECHVE .uuuutiuteiuterntessserseisss s saase e ssnssasssare e st ssasssannstansesanns 288
11.6 The Load Image Format (--load_image OPtioN)eeiiiiereiiiiiieeirainesiaaaneesaaaanressaaanrassaannneesss 289
11.6.1 Load Image Section FOIMAtiONeeesrsueeesiristssssainsesssaiseesssinnessssannnressaansnsssaannnesss 289
11.6.2 Load Image CharaCteriStCS . .uuiueivurirseisieeiruterits e s rriassanssaes st s sanseransranns 289
11.7 EXcluding a Specified SECHON ...ttt e e s e e s s aae e s sa i r e s saann e aaannneeann 289
11.8 AsSSIgNING OULPUL FIlENAIMES . .uuiiiiiiieiiiii s s s s st a s e s s s s ann s s s s anr e e s saannnesss 290
11.9 Image Mode and the -fill OPtiON ...uiueeiiuiiiiri e s 291
11.9.1 Generating @ MemMOrY IMAGJE ...ouuuueieiiiieieeiiaateesaaaaee s aaanee s saaanresssaanrsesaaanraessaannnesss 291
11.9.2 Specifying @ Fill VaAlUE ...t s s s s s s s rannnenas 291
11.9.3 Steps to Follow in USiNg IMage MOOEuviiuiiiiiiiiiiiiieiiie i raaeenans 291
11.10 Building a Table for an ON-Chip BOOt LOAAETeeiiiiiiiiiiiii i are s raanae s ssnne s saaaneeeanns 292
11.10.1 Description of the BOOt Tableueiiiiiiiiiii i s s e e as 292
11.10.2 The BOOt Table FOIMAL .uuuueietiieiite it a s s s e s a s s r e sanr e raneaanns 292
11.10.3 How to Build the Boot Tableicieiiiiiiiiiii e 294
11.10.4 Using the C6000 BOOt LOBUET ...uuuereiiiuntesiniatssssiissssssaisessssinessssasnnsessannsssssannnnesss 295
11.11 Controlling the ROM DeViCe AJUIESS ..uuueeiiutiruteineirissiaseriats ittt it tsisssaaresaness 297
11.12 Control Hex Conversion Utility DIagNOSHCS ..uuueeeiiriieeiiaieesaaanressaaasessaaannsssaaannssssaanneesans 298
11.13 Description of the ODJECt FOIMALS ...uuiiiieeeiiiiie i s rr s r s ssanr e aaanreaanas 299
11.13.1 ASCII-Hex Object Format (--ascCii OPLiON) «..ueeiseiriuterneiiieeiieerine i i e 299
11.13.2 Intel MCS-86 Object Format (--intel OPLioN) ..uvveivisssiiseiiiiiri i 300
11.13.3 Motorola Exorciser Object Format (--motorola OPtion)uvveieeeiiiiieeriiiiiriiireraineess 301
11.13.4 Extended Tektronix Object Format (--tektronix OptioN)ccevvieiivieiiiiieiiiiiiraeaaeees 302
11.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)ccvvviueennn. 303
11.13.6 TI-TXT Hex Format (--ti_tXt OPLON) weuuuuueserriineesisintesssaisnesssainessssannrsssaannsssssannnnesss 304
12 Sharing C/C++ Header Files With Assembly SoUICeccooiviiiiiiiiiiiii 305
12.1 Overview Of the .CAECIS DIFECHVE ..uuuueirstiiiaeiiteiiie s r e snns 306
12.2 NOES ON C/CH+ CONVEISIONS 4ttuuseiunsersnsnussersesssssasesisnerasetsisttasse ettt 306
0 R o33 1 11T 1 306
12.2.2 Conditional Compilation (#if/#else/#fdef/etC.) ...ovivviiiiiiiiii 307
D e = 10 | 1= L 307
12.2.4 The #error and #Warning Dir€CIVES ..uvviiiieiisiiiiee i sasinnesssasnnressaannressaannnessaannnesss 307
12.2.5 Predefined symbol _ _ASM_HEADER_ _ ..iiuiiiiiiiiiiiii i s na e nes 307
12.2.6 Usage Within C/C++ asm() STatemMeNLSuueiiiiiiniiiiiie i rr e sr i re s rransne s srannneeas 307
I N I T T T 0o Lo I = o 307
12.2.8 Conversion Of #AEfiNe MACIOS ...uuiieiiiieiii i e s ranes 307
12.2.9 The #UNAEf DIFECHIVE wiiuuuiiitiiisiiir i e r et ra e anns 308
10720 T T = o0 0 T = 1o L 308
70 I R O] o 308
12.2.12 C/C+H+ BUIlt-IN FUNCHONS 11uutiiistiisiiiseiiteiissis s s s ssiassssesanerannesanns 309
12.2.13 Structures and UNIONS ...ueiueisssueisersersssssrsiissresasssssrssasssansasssasrarsaesanransraesananns 309
12.2.14 Function/Variable ProtOtyPES .uueiseirstiriseiiiteiae it sasssass s aanness 309
SPRU186V-July 2011 Contents 7

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com
12.2.15 C CONSLANt SUFIXES wtuuutiteiiutiiie i e et ra s s a e aa e e ranes 310
I T = 7=] o O @8 I/ 0T 310
12.3 Notes 0N C++ SPECIfIC CONVEISIONS . uuetiiuuuuresrnianressaissnesisassestsaissestaainrsssaaanresssannrssssannnnesss 310
2 0 R N\ =Ty 1= 1V - T T |1 o 310
I B I 1= 1T O o T 310
0 T T =0T 0] o 311
2 0 S T4 (1o 1T 10 311
12.4 Special ASSEMDIET SUPPOIT 1.uutiuseiieeiastesiar s s s a e e s e s s aar e aanerannes 311
12.4.1 Enumerations (.enum/.emember/.eNdenUM)cueeeiiiiiieriiii i rraannneess 311
12.4.2 The .defiNe DIr€CHVE ..uuutiieeiiteiie s st e e r e s e s e s s an e s n s raneannns 311
12.4.3 The .undefine/.unasg DIr€CHVES ...iiueiiiuteiistiristiris it i rais e raneaanns 311
12.4.4 The $defined() BuUilt-In FUNCHON +..uuieiisiisiisiriine s s s snnaas 312
12.4.5 The $sizeof BUIlt-IN FUNCHONuiniieiieiieii sttt s e s e e s r e e s e s e reaneanns 312
12.4.6 Structure/Union Alignment & $alignof() ...oevieiiiiiiiiiiiiiri s 312
12.4.7 The .CStrNG DIFECHVE . .uuiiietiiiiiieeisire it sr e s sr s s s s s s s s aaan s e s sannna e s saannnenss 312
A Symbolic DebUQQING DIirECIIVES .uiuiuiiiiitiiiir e et e st s e e e eaaas 313
Al DWARF Debugging FOMMEAL . .uuusiiseiseisssinse e rassssas s sse s s s s s e s a s n e s n e rannasanns 314
A.2 [©L@ T 1= o T8 T [11T TN o g o 1= N 314
A3 DEDUY DIFECHVE SYNTAX 4ttttiuaeestsainneessssnneeseasnnresseannesssanneessssnneessessnnesssssnneessssnnnessssnnnnsss 315
B XML Link Information File DeSCIIPLIONeneiiiie it e e e e e e e as 317
B.1 XML Information File ElemMENt TYPES . .uuuueiiiiiiieet it et saaaee s raaiane s ssaane e s saann e s saannrasssannnessannns 318
B.2 DOCUMENT EIMENTS uiititiiiitiiiiteiin i e r i r et r e n e 318
2307 A o =T Vo (= g = 1= 0 T o 318
[3027 [] 1U L 1=] 319
232G T O o 1= ot A @ o 0] o] 1= o | 320
2307 S o T 1 o7= I 1 {10 o N - 321
(232 SR o =Tt =Y g 1= o 1T o 323
B.2.6 Far Call TrampoliNg LISt ...uuuuuuesiisutseiritsesianssesssiseessssisnessssisrsssaassesssansnssssannnnss 324
B.2.7 SymMDBOl TabIe i e 325
C LT[0 ES7 T PPN 327
8 Contents SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS

INSTRUMENTS

www.ti.com

List of Figures

1-1. TMS320C6000 Software Development FIOWeivieeiiseiiiiiriri s sanresasenanseras 16
2-1. Partitioning Memory Into LOGICal BIOCKSuuueiiiiiiiieiiiiiies i s s s s e s s aan e s sannnenas 20
2-2. Using Sections DireCtiVeS EXAMPIE ... uuuiuiiie it r e r s 25
2-3. Object Code Generated by the File iN ... et r e e s e e nnne e 26
2-4. Combining Input Sections to Form an Executable Object Module.........c.vviiiiiiiiiiiiiiiiiin e 27
3-1. The Assembler in the TMS320C6000 Software Development FIOW.......vvveiiiiiiiiiiiininie e nnaeens 35
3-2. EXample ASSEMDIEE LISTING .. .uueeiiiieiiiiiiee st e e st e s ssaaas e e s saanae e s saan s e s ssannnssaaannneesaannnnersnn 62
e O I 1= (=1 0 I D =T o 1L 72
N 1 11 E= Y [4= 140 T (=Y o 1)Y= 73
e R I 1= I= 1T T T D1 =T 1)Y= 73
4-4. The .Space and .DES DirCHVES .. .uuuui ittt s s st s s s e st aaaa e asann s aaaannnes 74
4-5. Double-Precision Floating-PoinNt FOMMAL.uuieeiieeiiiiie i ras 97
T I 1= (=Y (o I 1 =T o 1) 104
4-7. Single-Precision Floating-Point FOrMALuoieeiiiiii i s s s raans 105
e FO I 1= DTS T o I =01 1Y/ 141
6-1. The Archiver in the TMS320C6000 Software Development FIOWooovieiiiiiiiiiiiii e aeaees 163
7-1. The Linker in the TMS320C6000 Software Development FIOW.cuvvieeeiiiiieiiiirriininaeens 171
7-2. Section Allocation Defined DY ...uiiieiiii i 201
7-3. RUN-TIME EXECULION OF 1.uutistiieiiiteiite s s s e s r s s s e e e s e s aarenanes 216
7-4. Memory Allocation SNOWN iN QNGueeeiiiiie i a it r e st saaaae et asannesaaannes 217
7-5. Compressed COPY Table. . ..o 236
TR o = 13T | T 1= o 237
7-7. Autoinitialization at RUN TiME uuuiiusiiisiiiiiiii i s s a s aaans 246
= T 1011 (= 2= o g = | 0 Y= o I o 1= 247
7-9. A BasiC DSP RUN-TIME MOUEIuutitiiiite i s r s aan e aaaes 252
7-10. DynamicC LINKING MOGEI ..u.uunueteiiiiieiiiiiie s e s r st e e s s ate s s s e st s s s ssaa s s s s s n e e s sannnnenss 253
7-11. Base Image EXECULADIE .. .uuee i s 254
8-1. Absolute Lister DevelopmMeENnt FIOWoiiiiiiie it e st a e e s saaaane e ssaann e e s saannn e s sannnneess 262
9-1. The Cross-Reference Lister Development FIOWeeiriiiseiiiieiiis s ss i s sanneenas 268
11-1. The Hex Conversion Utility in the TMS320C6000 Software Development FIOWccevvivviiieiiiieeinnnen. 276
11-2. Hex Conversion Utility ProCESS FIOW ...ttt i iee s rr e e s s e s s s anr e e s sanna e s sannnenss 280
11-3. Object File Data and Memory Widthsueeeiiiiiii i i r i rananeeas 281
11-4. Data, Memory, and ROM Widhsccuiiiiiiiiiiii i e s e s rreee s saanne e ssnanne e s sannnnesnannnnsns 283
11-5. The infile.out File Partitioned INto FOUr OULPUL FIlES ... ueeeiii i e e rrraeee s 286
G NS O B = G @] 1= o o e 0 | 299
11-7. Intel Hexadecimal ODJECt FOIMAL ...uuueuetiieeiiteiieeriat s e s s e s e s s s a s s s r s raneannns 300
8 I FR Y o) o] 0] o T o 1 T L 301
11-9. Extended TeKtroniX ODJECt FOIMALeeiieteiiiiteei i riee s s s s s sa s e ssanna e s saannaesss 302
0 I O T I 1= o o [0 @ o =T o e 03T 303
S R I 19 g B 1o o o - 304

SPRU186V-July 2011 List of Figures 9

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com

List of Tables

3-1. TMS320C6000 ASSEMDIEr OPLIONS +uuseiseerstirsresse it siat s s rass s s saarerasssanneraneans 36
B O o U O] 11 0] B =T 0 L1 (] £ 49
3-3. PrOCESSOr SYMDIOIS .. u sttt ittt et et e s e 50
3-4. Operators Used in EXPressions (PreCEUENCE) .uuuuurieiriiiieiiiaresiaaane s taainnsesaaannsessaannnessaannressss 53
3-5. Built-In Mathematical FUNCHIONS ... uviiiuiiiiiiiiiiiiiiiii s s aes 56
B I V03] o To A 1] 10 64
4-1. Directives That Define SECHONS ...uuutiiuseiierisi it rareraaes 66
4-2. Directives That Initialize Values (Data and MEMOIY)euiviiuereiriiniesiiiitesisaisesisaiisesssiinnsesaannnes 66
4-3. Directives That Perform Alignment and RESEIVE SPACE ...uuveiiuiirinieiiniiiiiiie i arirsriranneianes 67
4-4. Directives That Format the OULPUL LISHNG «.uueeeeiiiieeiiiii et e r s e s s raaaae e s saann s s snanne s aaanness 67
4-5. Directives That Reference Other FileS.....iuiiiiiiiiiiiiiiiiiiiiiiiiii i 67
4-6. Directives That Effect Symbol Linkage and Visibilityooeviiiiiiiii i e 68
4-7. Directives That Control Dynamic Symbol ViSiDilityvveseiiiesiiieiiiinisi i 68
4-8. Directives That Enable Conditional ASSEMDBIYuiiiiiiiiiiiii i s ranns 68
4-9. Directives That Define Union OF StrUCIUIE TYPES «uueeiutirinterteisieeiassrirsrassssinssaiss s rasssannsrnns 68
4-10. Directives That Define SYMDOIS ... e s rr e e s aaann e s aaannes 69
4-11. Directives That Define Common Data SECONS ...vvuuiiisiiiiiiiiiiiiiiiii i raes 69
4-12. Directives That Create or EffeCt MACIOS ...uuveiiuiiiiiiiii i i s s aaaes 69
4-13. Directives That Control DIagNOStCS ... uuueeiiiiieeiiaiieearaiaet e raaanre s sranressaaanseesaaaansesaaannnresaannnes 69
4-14. Directives That Perform Assembly SoUrce DebuUQguviiiiiiiiiiiiii i e 69
4-15. Directives That Are Used by the ADSOIULE LiSTEr.....uuiiieiiiiiiiiiii i 70
4-16. Directives That Perform Miscellan@0ous FUNCHONS ...uuiiseirssiiieiieiisrisisnseaeraasssiarssaneianes 70
5-1. Substitution Symbol Functions and RetUrN ValUESviiuieiiiiiiiniiiiiisiniis i sannaenss 148
ST O - 1 1] o 1Y =T L 159
5-3. Manipulating SUbStituUtion SYMDOISuueiseii i 159
5-4. Conditional ASSEMDIY . .uuuiiiiei i 159
5-5. Producing ASSEMDIY-TIME MESSATES 1. v uuteiutiruteistinseiaee sttt sass s ranrssaarsrnneianns 159
o TR o 4 . F= L] o 1 Lo T 1 o 159
A T = - T (o3 O o1 170 i LSS U] .- Y/ 173
7-2. Command File Preprocessing OptioNS SUMMAIY . ..uuvuueiruesirueesinneinneesissisisssanssiannesasssinrsraeisnns 173
7-3. DiagnoStiC OPtIONS SUMMAIY . .uiinunnteeianeesraaateessaanneessaanseessaaannessaaannessaaanneessaannnessannnnesss 173
7-4. File Search Path OptioNS SUMIMATY . ..ueuiiueeeiiateessateesraisssessaissesssaasessasasarssssasnnssssannsnssss 173
7-5. Linker OUtput OPtioNS SUMIMEIY .. uuttuueiteiueessssssessss s sasstae e ssastssasstannssasssannssansisnns 174
7-6. Symbol Management OPtioNS SUMIMAIY . .uueuseurusrsruseisuserassesinnerassssissrsssrasesasesasssissanrsianns 174
7-7. Run-Time Environment OPtioNS SUMIMAIY .. .ueeiiuuureerrunnnesrannsnsssaisssssssiinnssssinnnsesmannnnsmiamsnness 174
7-8. Link-Time Optimization OPtiONS SUMIMAIY ...uuueiruutirueeintsiaseerinre st sasssanresasssirsanseianes 175
7-9. Dynamic LiNKiNg OPtiONS SUMMEAIY .. .eineeeiaantesaaaansesssaansasssaansaessaannnessaannressaaannssssannnnssss 175
7-10. Miscellaneous OPLiONS SUMIMAIY «. .. uueeeisuuaeetssanesssassssssaasseessaassnessaannssssasnnsessasnnnessssnnesss 175
7-11. Groups of Operators Used in EXpressions (PreCedenCe) ...uuiveriiisiiutiriiiiiiniiisiiieerasssinsssnnsinnes 222
7-12. Compiler Options FOr DYNAmMIC LINKING «..uuueeieiiite it e e rr e s s e s ss i n e s sannn e s saannaenss 256
7-13. Linker Options FOr DYNamIiC LINKING «..eeuiuuueteinitsesiaisnesisissssssiissssssainssessainsnsssaanssessaannness 257
9-1. Symbol Attributes in Cross-Reference LiStiNg......uuueiveeirieeiiiiiiiiriiri s aaaes 270
11-1. Basic Hex Conversion ULty OPtiONSeeeeiiiieeisaaas s siaane s saaane s ssaannssssaannsessaannassaannnnnsss 277
S = T Yo ol I T= o =T 0] 1] o 294
11-3. Options for Specifying Hex CONVErsioN FOIMALS ...uiuueireeiiesiiteiieerissisiessasssaeesaasssinssannsianess 299
A-1. Symbolic DebUQQINGg DIrECHVES . .uuuuueiiatiiisisiire i ra e raa e rannens 315
10 List of Tables SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Preface
/] —{IE)S(’?SUMENTS SPRU186V—July 2011

Read This First

About This Manual
The TMS320C6000 Assembly Language Tools User's Guide explains how to use these assembly
language tools:
* Assembler
* Archiver
* Linker
« Library information archiver
* Absolute lister
» Cross-reference lister
+ Disassembler
* Object file display utility
* Name utility
» Strip utility
* Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments assembly language tools designed
specifically for the TMS320C6000 ™ 32-bit devices. This book consists of four parts:

» Introductory information, consisting of Chapter 1 and Chapter 2, gives you an overview of the
assembly language development tools. It also discusses object modules, which helps you to use the
TMS320C6000 tools more effectively. Read Chapter 2 before using the assembler and linker.

* Assembler description, consisting of Chapter 3 through Chapter 5, contains detailed information
about using the assembler. This portion explains how to invoke the assembler and discusses source
statement format, valid constants and expressions, assembler output, and assembler directives. It also
describes the macro language.

* Additional assembly language tools description, consisting of Chapter 6 through Chapter 11,
describes in detail each of the tools provided with the assembler to help you create executable object
files. For example, Chapter 7 explains how to invoke the linker, how the linker operates, and how to
use linker directives; Chapter 11 explains how to use the hex conversion utility.

* Reference material, consisting of Appendix A through Appendix C, provides supplementary
information including symbolic debugging directives that the TMS320C6000 C/C++ compiler uses. It
also provides a description of the XML link information file and a glossary.

SPRU186V-July 2011 Read This First 11

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Notational Conventions www.ti.com

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a speci al typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:
#i ncl ude <stdio. h>
mai n()
{ printf("hello, cruel world\n");

}

In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

‘cl6x [options] [filenames] [--run_linker [link_options] [object files]] ‘

Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_model or --ram_model option:

cléx --run_linker {--rom_model | --ram_model} flenames [--output_file= name.out]

--library= libraryname

In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in column 1.

symbol .usect "section name", size in bytes|, alignment]

Some directives can have a varying number of parameters. For example, the .byte directive can have
multiple parameters. This syntax is shown as [, ..., parameter].

The TMS320C6200 core is referred to as C6200. The TMS320C6400 core is referred to as C6400.
The TMS320C6700 core is referred to as C6700. TMS320C6000 and C6000 can refer to either C6200,
C6400, C6400+, C6700, C6700+, C6740, or C6600.

Following are other symbols and abbreviations used throughout this document:

Symbol Definition

B,b Suffix — binary integer

H, h Suffix — hexadecimal integer

LSB Least significant bit

MSB Most significant bit

0x Prefix — hexadecimal integer

Q,q Suffix — octal integer

12 Read This First SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments
You can use the following books to supplement this user's guide:

SPRAAO8 — Common Object File Format Application Report. Provides supplementary information on
the internal format of COFF object files. Much of this information pertains to the symbolic
debugging information that is produced by the C compiler.

SPRAB89— The C6000 Embedded Application Binary Interface Application Note. Provides a
specification for the ELF-based Embedded Application Binary Interface (EABI) for the C6000 family
of processors from Texas Instruments. The EABI defines the low-level interface between programs,
program components, and the execution environment, including the operating system if one is
present.

SPRU187 —TMS320C6000 Optimizing Compiler v 7.3 User's Guide. Describes the TMS320C6000 C
compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and
produces assembly language source code for the TMS320C6000 platform of devices (including the
C64x+ and C67x+ generations). The assembly optimizer helps you optimize your assembly code.

SPRU190 —TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000 family of digital signal processors
(DSPs).

SPRU198 —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000 digital
signal processors (DSPs). Before you use this manual, you should install your code generation and
debugging tools. Includes a brief description of the C6000 DSP architecture and code development
flow, includes C code examples and discusses optimization methods for the C code, describes the
structure of assembly code and includes examples and discusses optimizations for the assembly
code, and describes programming considerations for the C64x DSP.

SPRU731 —TMS320C62x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C62x digital signal processors
(DSPs) of the TMS320C6000 DSP family. The C62x DSP generation comprises fixed-point devices
in the C6000 DSP platform.

SPRU732 —TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRU733 —TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C67x and TMS320C67x+ digital
signal processors (DSPs) of the TMS320C6000 DSP platform. The C67x/C67x+ DSP generation
comprises floating-point devices in the C6000 DSP platform. The C67x+ DSP is an enhancement of
the C67x DSP with added functionality and an expanded instruction set.

SPRUGH7 —TMS320C66x CPU and Instruction Set Reference Guide Describes the CPU architecture,
pipeline, instruction set, and interrupts for the TMS320C66x digital signal processors (DSPs) of the
TMS320C6000 DSP platform. The C66x DSP generation comprises floating-point devices in the
C6000 DSP platform.

TMS320C6000 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

SPRU186V-July 2011 Read This First 13

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spraaO8
http://www.ti.com/lit/pdf/sprab89
http://www.ti.com/lit/pdf/spru187
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru731
http://www.ti.com/lit/pdf/spru732
http://www.ti.com/lit/pdf/spru733
http://www.ti.com/lit/pdf/sprugh7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

14 Read This First SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

. Chapter 1
I3 TEXAS SPRU186V—July 2011

INSTRUMENTS

Introduction to the Software Development Tools

The TMS320C6000™ is supported by a set of software development tools, which includes an optimizing
C/C++ compiler, an assembly optimizer, an assembler, a linker, and assorted utilities. This chapter
provides an overview of these tools.

The TMS320C6000 is supported by the following assembly language development tools:

* Assembler

* Archiver

* Linker

» Library information archiver

* Absolute lister

* Cross-reference lister

* Object file display utility

+ Disassembler

* Name utility

» Strip utility

* Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools.

For detailed information on the compiler and debugger, and for complete descriptions of the
TMS320C6000, refer to the books listed in Related Documentation From Texas Instruments.

Topic Page

1.1 Software Development TOOIS OVEIVIEWuiuiuiiiiiieiiiiiitiiieieeeetieieaeraeaseneaeaaanaaens 16

O o Yo ES R =YY o] o 0] 1 PP 17
SPRU186V-July 2011 Introduction to the Software Development Tools 15

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Software Development Tools Overview www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 shows the TMS320C6000 software development flow. The shaded portion highlights the most

common development path; the other portions are optional. The other portions are peripheral functions
that enhance the development process.

Figure 1-1. TMS320C6000 Software Development Flow

C/C++
source
files
Macro
source C/C++ Linear
files compiler assembly

Assembler Assembly
source optimizer
Assembly
Macro .
library Assembler optlmlzed
file
. ; Debugging
Object Library-build
files process
H Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

16 Introduction to the Software Development Tools

Copyright © 2011, Texas Instruments Incorporated

SPRU186V-July 2011

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Tools Descriptions

1.2 Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

3

The C/C++ compiler accepts C/C++ source code and produces TMS320C6000 assembly language
source code. A shell program, an optimizer, and an interlist utility are included in the compiler
package:

— The shell program enables you to compile, assemble, and link source modules in one step.
— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

See the TMS320C6000 Optimizing Compiler User's Guide for more information.

The assembly optimizer allows you to write linear assembly code without being concerned with the
pipeline structure or with assigning registers. It accepts assembly code that has not been
register-allocated and is unscheduled. The assembly optimizer assigns registers and uses loop
optimization to turn linear assembly into highly parallel assembly that takes advantage of software
pipelining. See the TMS320C6000 Optimizing Compiler User's Guide for more information.

The assembler translates assembly language source files into machine language object modules.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control various aspects of the assembly process, such as the source listing
format, data alignment, and section content. See Chapter 3 through Chapter 5. See the TMS320C62x
DSP CPU and Instruction Set Reference Guide, TMS320C64x/C64x+ DSP CPU and Instruction Set
Reference Guide, TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide, and
TMS320C66x CPU and Instruction Set Reference Guide for detailed information on the assembly
language instruction set.

The linker combines object files into a single static executable or object dynamic object module. As it
creates a static executable module, it performs relocation and resolves external references. The linker
accepts relocatable object modules (created by the assembler) as input. It also accepts archiver library
members and output modules created by a previous linker run. Link directives allow you to combine
object file sections, bind sections or symbols to addresses or within memory ranges, and define or
redefine global symbols. See Chapter 7.

For more information about creating a dynamic object module, see
http://processors.wiki.ti.com/index.php/C6000 Dynamic_Linking.

The archiver allows you to collect a group of files into a single archive file, called a library. For
example, you can collect several macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You can also use the archiver to collect
a group of object files into an object library. The linker includes in the library the members that resolve
external references during the link. The archiver allows you to modify a library by deleting, replacing,
extracting, or adding members. See Section 6.1.

The library information archiver allows you to create an index library of several object file library
versions, which is useful when several versions of a single library are available. This index library is the
used in the link step in place of a particular version of your object file library. See Section 6.5.

You can use the library-build process to build your own customized run-time-support library. See the
TMS320C6000 Optimizing Compiler User's Guide for more information.

The hex conversion utility converts an object file into TI-Tagged, ASCII-Hex, Intel, Motorola-S, or
Tektronix object format. The converted file can be downloaded to an EPROM programmer. See
Chapter 11.

The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter 8.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See Chapter 9.

The main product of this development process is a module that can be executed in a TMS320C6000
device. You can use one of several debugging tools to refine and correct your code. Available products
include:

— An instruction-accurate and clock-accurate software simulator
— An XDS emulator

SPRU186V-July 2011 Introduction to the Software Development Tools 17
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Tools Descriptions www.ti.com

In addition, the following utilities are provided:

* The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both human readable and XML formats. See Section 10.1.

* The disassembler writes the disassembled object code from object or executable files. See
Section 10.2.

* The name utility prints a list of names defined and referenced in a object or an executable file. See
Section 10.3.

* The strip utility removes symbol table and debugging information from object and executable files.
See Section 10.4.

18 Introduction to the Software Development Tools SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

. Chapter 2
I3 TEXAS SPRU186V—July 2011

INSTRUMENTS
Introduction to Object Modules

The assembler and linker create object modules that can be executed by a TMS320C6000 device.

Object modules make modular programming easier because they encourage you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are known as
sections. Both the assembler and the linker provide directives that allow you to create and manipulate
sections.

This chapter focuses on the concept and use of sections in assembly language programs.

Topic Page

0t S 1= o3 10 1 PP 20

2.2 How the Assembler Handles SECLIONSciuiuiiiiiiiiiiiiiiiiiie e e aeas 21

2.3 How the Linker Handl€S SECLIONS ..cuiiuiiiuiiiitiiiiei et e e naaeas 27

2 S 1= oY o= | 1 o] o TP 28

25 RUN-TIME REIOCAIION ettt ettt et et e e aa e e e e aaeaeeaeaa st aaeaaeaeanenns 30

P20 G I o - Vo I [o = T 0o | = o Y 30

2.7 Symbols in an ODJECt Filec.euieiii et et e e 31

2.8 Object File Format SPeCIfiCatiONSciuiuiuiiiiiiiiii et a e aeas 32
SPRU186V-July 2011 Introduction to Object Modules 19

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Sections www.ti.com

2.1

Sections

The smallest unit of an object file is called a section. A section is a block of code or data that occupies
contiguous space in the memory map with other sections. Each section of an object file is separate and
distinct. Object files usually contain three default sections:

.text section usually contains executable code
.data section usually contains initialized data
.bss section usually reserves space for uninitialized variables

In addition, the assembler and linker allow you to create, name, and link named sections that are used like
the .data, .text, and .bss sections.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized; named
sections created with the .sect assembler directive are also initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .bss section is
uninitialized; named sections created with the .usect assembler directive are
also uninitialized.

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is
called allocation. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine into a portion of the memory map that contains ROM.

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory.

Figure 2-1. Partitioning Memory Into Logical Blocks

Object file Target memory

.bss RAM

.data EEPROM

text

ROM

20

Introduction to Object Modules SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

www.ti.com How the Assembler Handles Sections

2.2

221

How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has five directives that support this function:

+ .bss

* .usect

* .text

+ .data

+ .sect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create
initialized sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.2.4.

Default Sections Directive

NOTE: If you do not use any of the sections directives, the assembler assembles everything into
the .text section.

Uninitialized Sections

Uninitialized sections reserve space in TMS320C6000 memory; they are usually allocated into RAM.
These sections have no actual contents in the object file; they simply reserve memory. A program can use
this space at run time for creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler directives.

» The .bss directive reserves space in the .bss section.

* The .usect directive reserves space in a specific uninitialized named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or
the named section. The syntaxes for these directives are:

.bss symbol, size in bytes|, alignment[, bank offset]]
symbol .usect "section name", size in bytes|[, alignment[, bank offset]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable that you are reserving space for. It can
be referenced by any other section and can also be declared as a global symbol (with
the .global directive).

size in bytes is an absolute expression. The .bss directive reserves size in bytes bytes in the .bss
section. The .usect directive reserves size in bytes bytes in section name. For both
directives, you must specify a size; there is no default value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the
space allocated. The default value is byte aligned. The value must be power of 2.

bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs on a
specific memory bank boundary. The bank offset measures the number of bytes to
offset from the alignment specified before assigning the symbol to that location.

section name tells the assembler which named section to reserve space in. See Section 2.2.3.

SPRU186V-July 2011 Introduction to Object Modules 21
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

222

The initialized section directives (.text, .data, and .sect) tell the assembler to stop assembling into the
current section and begin assembling into the indicated section. The .bss and .usect directives, however,
do not end the current section and begin a new one; they simply escape from the current section
temporarily. The .bss and .usect directives can appear anywhere in an initialized section without affecting
its contents. For an example, see Section 2.2.6.

The .usect directive can also be used to create uninitialized subsections. See Section 2.2.4, for more
information on creating subsections.

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in TMS320C6000 memory when the program is loaded. Each initialized section
is independently relocatable and may reference symbols that are defined in other sections. The linker
automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The syntaxes for these directives
are:

text
.data

.sect "section name"

When the assembler encounters one of these directives, it stops assembling into the current section
(acting as an implied end of current section command). It then assembles subsequent code into the
designated section until it encounters another .text, .data, or .sect directive.

Sections are built through an iterative process. For example, when the assembler first encounters a .data
directive, the .data section is empty. The statements following this first .data directive are assembled into
the .data section (until the assembler encounters a .text or .sect directive). If the assembler encounters
subsequent .data directives, it adds the statements following these .data directives to the statements
already in the .data section. This creates a single .data section that can be allocated continuously into
memory.

Initialized subsections are created with the .sect directive. The .sect directive can also be used to create
initialized subsections. See Section 2.2.4, for more information on creating subsections.

22

Introduction to Object Modules SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I

WWW.1i

TEXAS
INSTRUMENTS

i.com How the Assembler Handles Sections

2.2.3

Named Sections

Named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section in the object file. When
linked, this .text section is allocated into memory as a single unit. Suppose there is a portion of executable
code (perhaps an initialization routine) that you do not want allocated with .text. If you assemble this
segment of code into a named section, it is assembled separately from .text, and you can allocate it into
memory separately. You can also assemble initialized data that is separate from the .data section, and
you can reserve space for uninitialized variables that is separate from the .bss section.

Two directives let you create named sections:

« The .usect directive creates uninitialized sections that are used like the .bss section. These sections
reserve space in RAM for variables.

* The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect "section name", size in bytes|[, alignment[, bank offset]]
.sect "section name"

The section name parameter is the name of the section. For COFF, you can create up to 32 767 separate
named sections. For ELF, the max number of sections is 2%2-1 (4294967295). For the .usect and .sect
directives, a section name can refer to a subsection; see Section 2.2.4 for details.

Each time you invoke one of these directives with a new name, you create a new named section. Each
time you invoke one of these directives with a name that was already used, the assembler assembles
code or data (or reserves space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect directive and then try to use the
same section with .sect.

2.2.4 Subsections
Subsections are smaller sections within larger sections. Like sections, subsections can be manipulated by
the linker. Placing each function and object in a uniquely-named subsection allows finer-grained memory
placement, and also allows the linker finer-grained unused-function elimination. You can create
subsections by using the .sect or .usect directive. The syntaxes for a subsection name are:
symbol .usect "section hame:subsection name",size in bytes[,alignment[,bank offset]]

.sect "section name:subsection name"
A subsection is identified by the base section name followed by a colon and the name of the subsection. A
subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:
.sect ".text:_func"

Using the linker's SECTIONS directive, you can allocate .text:_func separately, or with all the .text
sections. See Section 7.5.4.1 for an example using subsections.
You can create two types of subsections:
+ Initialized subsections are created using the .sect directive. See Section 2.2.2.
* Uninitialized subsections are created using the .usect directive. See Section 2.2.1.
Subsections are allocated in the same manner as sections. See Section 7.5.4 for information on the
SECTIONS directive.

SPRU186V-July 2011 Introduction to Object Modules 23

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
How the Assembler Handles Sections www.ti.com
2.2.5 Section Program Counters
The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.
An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.
The assembler treats each section as if it began at address 0; the linker relocates each section according
to its final location in the memory map. See Section 2.4 for information on relocation.
2.2.6 Using Sections Directives
Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back
and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.
The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A
line in a listing file has four fields:
Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.
See Section 3.12 for more information on interpreting the fields in a source listing.
24 Introduction to Object Modules SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com How the Assembler Handles Sections
Figure 2-2. Using Sections Directives Example

]_ EEEE RS S S EEEEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEES

2 **% Assemble an initialized table into .data. * %

3 R R R R R S SRS R SRR S SRR R R R R R SR RS RS R R R R R RS EEEEEEEE SRS

4 00000000 .data

5 00000000 00000011 coeff .word 011h,022h

00000004 00000022

khkkhhkhhhhhhhhdhhdhhhdhddhhdhhhdddhdhddrdhdrddrdddrrddrrs

6
7 ** Reserve space in .bss for a variable. * %
8 EEE RS S S S EEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEES

9 00000000 .bss varl,4

10 00000004 .bss buffer, 40

11 EEEE R SRS E LSRR EEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEES]
12 *% Still in .data section * %
13 EEE RS S S S E SRS EEEEEEEEEEEEEEEEEEEE
14 00000008 00001234 ptr .word 01234h

15 EEE RS RS E R SRS E SRR S SRR R R R R R SR RS RS EREE R RS EEEEEEEE SRS
16 ** Assemble code into .text section *k
17 EEEE SRR RS EEEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEES]
18 00000000 .text

19 00000000 00800528 sum: MVK 10,A1

20 00000004 021085E0 ZERO A4

21

22 00000008 01003664 aloop: LDW *A0++,A2

23 0000000c 00004000 NOP 3

24 00000010 0087E1A0 SUB Al,1,Al

25 00000014 021041E0 ADD A2,A4,A4

26 00000018 80000112 [Al] B aloop

27 0000001c 00008000 NOP 5

28

29 00000020 0200007C- STW A4, *+Bl4(varl)

30 EEE RS SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
31 ** Assemble another initialized table in .data **
32 EEE R RS RS E RS SRS E RS S E R R R R R SR RS RS EE R RS EEEEEEEE SRS
33 0000000c .data

34 0000000c 000000AA ivals .word 0aah, Obbh, Occh
00000010 000000BB
00000014 000000CC

35 EEE R RS RS SRS SRS E RS SRR R R R R SR RS RS EE R RS EEEEEEEE SRS
36 *%* Define another section for more variables. **
37 EEEE R SRS E RS EEEEEEEREREEEEEEEEEEEEEEEEEEEESEEEEEEES]
38 00000000 var2 .usect “newvars”,4
39 00000004 inbuf .usect “"newvars”,4
40 EEE RS S S S EEE LSS EE SRS EEEEEEEEEEEEEEEEEEES]
41 ** Assemble more code into the .text section. **
42 EEE R R SRS E RS E SRR S SRR R R R R SR RS RS R R R RS EEEEEEEE SRS
43 00000024 .text
44 00000024 01003664 xmult: LDW *A0++,A2
45 00000028 00006000 NOP 4
46 0000002c 020C4480 MPYHL A2,A3,A4
47 00000030 02800028- MVKL var2,A5
48 00000034 02800068- MVKH var2,A5
49 00000038 02140274 STW A4, *A5
50 EEE R RS S E S EEEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEE
51 *%* Define a named section for interrupt vectors **
52 EE R R R SR RS R SRR R R R SR EE R R R R R R SR RS R R R R EEEEEEREEEEEESE T
53 00000000 .sect "vectors”
54 00000000 00000012" B sum
55 00000004 00008000 NOP 5
Field 1 Field2 Field 3 Field 4
SPRU186V-July 2011 Introduction to Object Modules 25

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
How the Assembler Handles Sections www.ti.com
As Figure 2-3 shows, the file in Figure 2-2 creates five sections:
text contains 15 32-bit words of object code.
.data contains six words of initialized data.
vectors is a named section created with the .sect directive; it contains two words of object code.
.bss reserves 44 bytes in memory.
newvars is a named section created with the .usect directive; it contains eight bytes in memory.

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in Figure 2-2

Line numbers Object code Section

19 00800528 text
20 021085E0
22 01003664
23 00004000
24 0087E1A0
25 021041E0
26 80000112
27 00008000
29 0200007C-
44 01003664
45 00006000
46 020C4480
47 02800028-
48 02800068-
49 02140274

5 00000011 .data

5 00000022
14 00001234
34 000000AA
34 000000BB
34 000000CC
54 00000000’ vectors
54 00000024’

No data— .bss

9 44 bytes

10 reserved
No data— newvars
38 8 bytes
39 reserved
26 Introduction to Object Modules SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com How the Linker Handles Sections
2.3 How the Linker Handles Sections
The linker has two main functions related to sections. First, the linker uses the sections in object files as
building blocks; it combines input sections (when more than one file is being linked) to create output
sections in an executable output module. Second, the linker chooses memory addresses for the output
sections.
Two linker directives support these functions:
+ The MEMORY directive allows you to define the memory map of a target system. You can name
portions of memory and specify their starting addresses and their lengths.
* The SECTIONS directive tells the linker how to combine input sections into output sections and where
to place these output sections in memory.
Subsections allow you to manipulate sections with greater precision. You can specify subsections with the
linker's SECTIONS directive. If you do not specify a subsection explicitly, then the subsection is combined
with the other sections with the same base section name.
It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor's default allocation algorithm described in Section 7.7. When you do use linker directives, you
must specify them in a linker command file.
Refer to the following sections for more information about linker command files and linker directives:
» Section 7.5, Linker Command Files
+ Section 7.5.3, The MEMORY Directive
» Section 7.5.4, The SECTIONS Directive
» Section 7.7, Default Allocation Algorithm
2.3.1 Default Memory Allocation
Figure 2-4 illustrates the process of linking two files together.
Figure 2-4. Combining Input Sections to Form an Executable Object Module
file1.0bj
zext
bss Executable
object module Memory map
file1
.data (-text) Executable
: ——H——— code
nit ile2 text
(named section) 1 (text) L
file1
(.data) Initialized
—————— data
file2 (.data)
(.data)
file1
file2.0bj (:bss) Space for
— I P Nl variables
file2 (.bss)
text (.bss)
bss b Init Init
data Tables Tables
Tables
(named section)
SPRU186V-July 2011 Introduction to Object Modules 27

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Relocation www.ti.com

2.3.2

24

In Figure 2-4, filel.obj and file2.0bj have been assembled to be used as linker input. Each contains the
.text, .data, and .bss default sections; in addition, each contains a hamed section. The executable object
module shows the combined sections. The linker combines the .text section from filel.obj and the .text
section from file2.0bj to form one .text section, then combines the two .data sections and the two .bss
sections, and finally places the named sections at the end. The memory map shows how the sections are
put into memory.

By default, the linker begins at Oh and places the sections one after the other in the following order: .text,
.const, .data, .bss, .cinit, and then any named sections in the order they are encountered in the input files.

The C/C++ compiler uses the .const section to store string constants, and variables or arrays that are
declared as far const. The C/C++ compiler produces tables of data for autoinitializing global variables;
these variables are stored in a named section called .cinit (see Example 7-8). For more information on the
.const and .cinit sections, see the TMS320C6000 Optimizing Compiler User's Guide .

Placing Sections in the Memory Map

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to
use the default setup. For example, you may not want all of the .text sections to be combined into a single
.text section. Or you may want a named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EPROM, etc.) in varying
amounts; you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 7.5.3
and Section 7.5.4.

Relocation

The assembler treats each section as if it began at address 0. All relocatable symbols (labels) are relative
to address 0 in their sections. Of course, all sections cannot actually begin at address 0 in memory, so the
linker relocates sections by:

» Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive
» Adjusting symbol values to correspond to the new section addresses

» Adjusting references to relocated symbols to reflect the adjusted symbol values

The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries to patch
the references after the symbols are relocated. Example 2-1 contains a code segment for a
TMS320C6000 device that generates relocation entries.

Example 2-1. Code That Generates Relocation Entries

1 .global X

2 00000000 00000012! Z: B X Uses an external relocation
3 00000004 0180082A MVKL Y, B3 ; Uses an internal relocation
4 00000008 0180006A MVKH Y, B3 Uses an internal relocation
5 0000000C 00004000 NOP 3

6

7 00000010 O001EOQ0 Y: | DLE

8 00000014 00000212 B Y

9 00000018 00008000 NOP 5

In Example 2-1, both symbols X and Y are relocatable. Y is defined in the .text section of this module; X is
defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 16 (relative to address 0 in the .text
section). The assembler generates two relocation entries: one for X and one for Y. The reference to X is
an external reference (indicated by the ! character in the listing). The reference to Y is to an internally
defined relocatable symbol (indicated by the ' character in the listing).

28

Introduction to Object Modules SPRU186V-July 2011
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Relocation

After the code is linked, suppose that X is relocated to address 0x7100. Suppose also that the .text
section is relocated to begin at address 0x7200; Y now has a relocated value of 0x7210. The linker uses
the two relocation entries to patch the two references in the object code:

00000012 B X becomes of f fe012
0180082A MWKL Y becomes 01B9082A
0180006A WKH Y becomes 1860006A

Under the ELF EABI, the relocations are symbol-relative rather than section-relative. This means that in
COFF, the relocation generated for "Y' will actually have a reference to the ".text' section symbol and will
have an offset of 16. Under ELF, the relocation generated for 'Y' would actually refer to the symbol "Y' and
resolve the value for 'Y" in the opcode based on where the definition of "Y' ends up.

2.4.0.1 Expressions With Multiple Relocatable Symbols (COFF Only)

Sometimes an expression contains more than one relocatable symbol, or cannot be evaluated at
assembly time. In this case, the assembler encodes the entire expression in the object file. After
determining the addresses of the symbols, the linker computes the value of the expression as shown in
Example 2-2.

Example 2-2. Simple Assembler Listing

.global synl, synP

wWN -

00000000 00800028% MVKL syn2 - syni, Al

The symbols sym1 and sym2 are both externally defined. Therefore, the assembler cannot evaluate the
expression sym2 - syml, so it encodes the expression in the object file. The '%' listing character indicates
a relocation expression. Suppose the linker relocates sym2 to 300h and sym1 to 200h. Then the linker
computes the value of the expression to be 300h - 200h = 100h. Thus the MVKL instruction is patched to:

00808028 MVKL 100h, A1

Expression Cannot Be Larger Than Space Reserved

NOTE: If the value of an expression is larger, in bits, than the space reserved for it, you will receive
an error message from the linker.

Each section in an object module has a table of relocation entries. The table contains one relocation entry
for each relocatable reference in the section. The linker usually removes relocation entries after it uses
them. This prevents the output file from being relocated again (if it is relinked or when it is loaded). A file
that contains no relocation entries is an absolute file (all its addresses are absolute addresses). If you
want the linker to retain relocation entries, invoke the linker with the --relocatable option (see

Section 7.4.2.2).

2.4.0.2 Dynamic Relocation Entries (ELF Only)

Under dynamic linking models, the processing of relocation entries is handled slightly differently. If a
relocation refers to a symbol that is imported from another dynamic module, then the static linker
generates a dynamic relocation which must be processed by the dynamic linker at dynamic load time
(when the definition of the imported symbol is available).

SPRU186V-July 2011 Introduction to Object Modules 29
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Run-Time Relocation www.ti.com

2.5

2.6

Run-Time Relocation

At times you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in an external-memory-based system. The code must be loaded into
external memory, but it would run faster in internal memory.

The linker provides a simple way to handle this. Using the SECTIONS directive, you can optionally direct
the linker to allocate a section twice: first to set its load address and again to set its run address. Use the
load keyword for the load address and the run keyword for the run address.

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For an example
that illustrates how to move a block of code at run time, see Example 7-10.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The
linker allocates uninitialized sections only once; if you specify both run and load addresses, the linker
warns you and ignores the load address.

For a complete description of run-time relocation, see Section 7.5.5.

Loading a Program

The linker can be used to produce static executable object modules. An executable object module has the
same format as object files that are used as linker input; the sections in an executable object module,
however, are combined and relocated into target memory.

To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory. Several methods can be used for loading a program, depending on the execution
environment. Common situations are described below:

* Code Composer Studio can load an executable object module onto hardware. The Code Composer
Studio loader reads the executable file and copies the program into target memory.

* You can use the hex conversion utility (hex6x, which is shipped as part of the assembly language
package) to convert the executable object module into one of several object file formats. You can then
use the converted file with an EPROM programmer to burn the program into an EPROM.

« A standalone simulator can be invoked by the load6x command and the name of the executable object
module. The standalone simulator reads the executable file, copies the program into the simulator and
executes it, displaying any C /0.

30

Introduction to Object Modules SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I} TEXAS
INSTRUMENTS
www.ti.com Symbols in an Object File
2.7 Symbols in an Object File
An object file contains a symbol table that stores information about symbols in the program. The linker
uses this table when it performs relocation.
2.7.1 External Symbols
External symbols are symbols that are defined in one file and referenced in another file. You can use the
.def, .ref, or .global directive to identify symbols as external:
def The symbol is defined in the current file and used in another file.
.ref The symbol is referenced in the current file, but defined in another file.
.global The symbol can be either of the above.
The following code segment illustrates these definitions.
. def X
.ref y
.global z
.global ¢
q B B3
NOP 4
MVK 1, Bl
X W A0, Al
MVKL y, B3
MKH vy, B3
B z
NOP 5
In this example, the .def definition of x says that it is an external symbol defined in this file and that other
files can reference x. The .ref definition of y says that it is an undefined symbol that is defined in another
file. The .global definition of z says that it is defined in some file and available in this file. The .global
definition of q says that it is defined in this file and that other files can reference q.
The assembler places x, y, z, and q in the object file's symbol table. When the file is linked with other
object files, the entries for x and q resolve references to x and g in other files. The entries for y and z
cause the linker to look through the symbol tables of other files for y's and z's definitions.
The linker must match all references with corresponding definitions. If the linker cannot find a symbol's
definition, it prints an error message about the unresolved reference. This type of error prevents the linker
from creating an executable object module.
SPRU186V-July 2011 Introduction to Object Modules 31

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Object File Format Specifications www.ti.com
2.8 Object File Format Specifications
The object files created by the assembler and linker conform to either the ELF (Executable and Linking
Format) or COFF (Common Obiject File Format) binary formats, depending on the ABI selected when
building your program. When using the EABI mode, the ELF format is used. For the older COFF ABI
mode, the legacy COFF format is used.
Some features of the assembler may apply only to the ELF or COFF object file format. In these cases, the
proper object file format is stated in the feature description.
See the TMS320C6000 Optimizing Compiler User's Guide and The C6000 Embedded Application Binary
Interface Application Report for information on the different ABIs available.
See the Common Object File Format Application Note for information about the COFF object file format.
The ELF object files generated by the assembler and linker conform to the December 17, 2003 snapshot
of the System V generic ABI (or gABI).
32 Introduction to Object Modules SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://sco.com/developers/gabi/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

. Chapter 3
I3 TEXAS SPRU186V—July 2011

INSTRUMENTS

Assembler Description

The TMS320C6000 assembler translates assembly language source files into machine language object
files. These files are in object modules, which are discussed in Chapter 2. Source files can contain the
following assembly language elements:

Assembler directives described in Chapter 4
Macro directives described in Chapter 5
Assembly language instructions described in the TMS320C62x DSP CPU and Instruction Set

Reference Guide, TMS320C64x/C64x+ DSP CPU and
Instruction Set Reference Guide, TMS320C67x/C67x+ DSP
CPU and Instruction Set Reference Guide, and TMS320C66x
CPU and Instruction Set Reference Guide.

Topic Page
3.1l ASSEMDBDIEr OVEIVIEW ..euiuiniiinieieit ittt e e e e et e e e e a e e e et e s e e e e e enennnnnna e e e enen 34
3.2 The Assembler's Role in the Software Development FIOWcccviiiiiiiiiiiiiiiiinnnnnn. 35
3.3 INVOKING the ASSEMDbIEr ...t ettt e e e e e e e nns 36
3.4 Controlling Application Binary INterfacecooieiiiiiiiiiiiiie e 37
3.5 Naming Alternate Directories for Assembler INPULcoiiiiiiiiiiiiii s 37
3.6 Source Statement FOIrMALcciniiniiiiiiii et e e s e e et e e e aaenas 40
G T A 0 157 = 011 43
S T O o == Toa 1= S 1 1 Lo = PP 45
1SS0 11 10] P 45
B 0T T o 1= [0 PP 53
3.11 Built-in FUNCtIONS ANd OPEIatOrSiuieieeueueuininieitieieieaeeeenearerarereaeaesaeenrararnens 56
G0 I Yo 11 | o = I 1= 1 o P 61
3.13 Debugging ASSEMDIY SOUICE .iuuiuiuiiiiitiiie ettt a et e e e e e enes 63
3.14 Cross-Reference LiSTiNGgS ..iuiiiiiiuiiiiiitiiiie et e ettt et a s e e e e s e e eees 64

SPRU186V-July 2011 Assembler Description 33

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Assembler Overview www.ti.com

3.1

Assembler Overview

The assembler does the following:

3

.

Processes the source statements in a text file to produce a relocatable object file
Produces a source listing (if requested) and provides you with control over this listing

Allows you to segment your code into sections and maintain a section program counter (SPC) for each
section of object code

Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

Allows conditional assembly
Supports macros, allowing you to define macros inline or in a library

34

Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com The Assembler's Role in the Software Development Flow

3.2 The Assembler's Role in the Software Development Flow

Figure 3-1 illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the TMS320C6000 C/C++ compiler.

Figure 3-1. The Assembler in the TMS320C6000 Software Development Flow

C/IC++
source
files
Macro
source C/C++ Linear
files compiler assembly

Assembler Assembly

source

optimizer

Assembly
Macro T
library Assembler OptlfTézed

; : Debugging
Object Library-build tools
files process
- Run-time-
Library of Support
object library
files

Executable
object file

Hex-conversion
utility

EPROM Absolute lister Cross-reference | Object file

programmer lister utilities

SPRU186V-July 2011

Assembler Description 35
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Assembler

13 TEXAS
INSTRUMENTS

www.ti.com

3.3 Invoking the Assembler

To invoke the assembler, enter the following:

cl6x input file [options]

cléx

is the command that invokes the assembler through the compiler. The compiler considers

any file with an .asm extension to be an assembly file and calls the assembler.

input file
options

names the assembly language source file.
identify the assembler options that you want to use. Options are case sensitive and can

appear anywhere on the command line following the command. Precede each option with
one or two hyphens as shown.

The valid assembler options are listed in Table 3-1.

Some runtime model options such as --abi=coffabi or --abi=eabi, --big_endian or little_endian, and --silicon
version influence the behavior of the assembler. These options are passed to the compiler, assembler,
and linker from the shell utility, which is detailed in the TMS320C6000 Optimizing Compiler User's Guide.

Table 3-1. TMS320C6000 Assembler Options

Option

Alias

Description

--absolute_listing

-ar=num

--asm_define=name[=def]

--asm_dependency

--asm_includes

--asm_listing
--asm_undefine=name

--cmd_file=filename

--copy_file=filename

--cross_referen ce

--include_file=filename

--include_path=pathname

--output_all_syms

--quiet

-aa

-apd

-api

-ahc

Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

Suppresses the assembler remark identified by num. A remark is an informational assembler
message that is less severe than a warning. If you do not specify a value for #, all remarks are
suppressed.

Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1.
See Section 3.9.4.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name
as the source file but with a .ppa extension.

Produces a listing file with the same name as the input file with a .Ist extension.

Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a
semicolon (* or ;) at the beginning of a line in the command file to include comments.
Comments that begin in any other column must begin with a semicolon. Within the command
file, filenames or option parameters containing embedded spaces or hyphens must be
surrounded with quotation marks. For example: "this-file.asm"

Copies the specified file for the assembly module. The file is inserted before source file
statements. The copied file appears in the assembly listing files.

Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --cross_reference option, the assembler creates a listing file
automatically, naming it with the same name as the input file with a .Ist extension.

Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 3.5.1.

Puts all defined symbols in the object file's symbol table. The assembler usually puts only
global symbols into the symbol table. When you use --output_all_syms, symbols defined as
labels or as assembly-time constants are also placed in the table.

Suppresses the banner and progress information (assembler runs in quiet mode).

36 Assembler Description

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Controlling Application Binary Interface
Table 3-1. TMS320C6000 Assembler Options (continued)

Option Alias Description

--symdebug:dwarf -g Enables assembler source debugging in the C source debugger. Line information is output to
the object module for every line of source in the assembly language source file. You cannot
use the --symdebug:dwarf option on assembly code that contains .line directives. See
Section 3.13.

--syms_ignore_case -ac Makes case insignificant in the assembly language files. For example, --syms_ignore_case

makes the symbols ABC and abc equivalent. If you do not use this option, case is significant
(default). Case significance is enforced primarily with symbol names, not with mnemonics and
register names.

3.4 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object code to link together,
regardless of its source, and allows the resulting executable to run on any system that supports that ABI

Object modules conforming to different ABIs cannot be linked together. The linker detects this situation
and generates an error.

The C6000 compiler supports two ABIs. The ABI is chosen through the --abi option as follows:

* COFF ABI (--abi=coffabi)

The COFF ABI is the original ABI format. There is no COFF to ELF conversion possible; recompile or
reassemble assembly code.

+ C6000 EABI (--abi=eabi)
Use this option to select the C6000 Embedded Application Binary Interface (EABI).

All code in an EABI application must be built for EABI. Make sure all your libraries are available in
EABI mode before migrating your existing COFF ABI systems to C6000 EABI. For full details, see
http://tiexpressdsp.com/index.php/EABI_Support_in_C6000 Compiler and The C6000 Embedded
Application Binary Interface Application Report (SPRAB89).

3.5 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. Chapter 4 contains examples of the .copy, .include, and
.mlib directives. The syntax for these directives is:

.copy ["]filename["]
.include ["]filename["]
.mlib ["]filename["]

The filename names a copy/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information. The assembler searches for the file in the following
locations in the order given:

1. The directory that contains the current source file. The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.

2. Any directories named with the --include_path option
Any directories named with the C6X_A_DIR environment variable
4. Any directories named with the C6X_C_DIR environment variable

w

SPRU186V-July 2011 Assembler Description 37

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://tiexpressdsp.com/index.php/EABI_Support_in_C6000_Compiler
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Naming Alternate Directories for Assembler Input www.ti.com

Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the --include_path option (described in Section 3.5.1) or the C6X_A_DIR environment variable (described
in Section 3.5.2). The C6X_C_DIR environment variable is discussed in the TMS320C6000 Optimizing
Compiler User's Guide.

3.5.1 Using the --include_path Assembler Option

The --include_path assembler option names an alternate directory that contains copy/include files or
macro libraries. The format of the --include_path option is as follows:

cl6x --include_path= pathname source filename [other options]

There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying
path information. If the assembler does not find the file in the directory that contains the current source
file, it searches the paths designated by the --include_path options.

For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:

. copy "copy.asnt

Assume the following paths for the copy.asm file:

UNIX: ltools/files/copy.asm
Windows: c:\tools\files\copy.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) cl 6x --include_path=/tools/files source.asm
Windows cl 6x --include_path=c:\tools\files source.asm

The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

3.5.2 Using the C6X_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the C6X_A_DIR environment variable to name alternate directories that contain copy/include files or
macro libraries.

The assembler looks for the C6X_A_DIR environment variable and then reads and processes it. If the
assembler does not find the C6X_A_DIR variable, it then searches for C6X_C_DIR. The
processor-specific variables are useful when you are using Texas Instruments tools for different
processors at the same time.

See the TMS320C6000 Optimizing Compiler User's Guide for details on C6X_C_DIR.

The command syntax for assigning the environment variable is as follows:

Operating System Enter
UNIX (Bourne Shell) C6X_A_DIR=" pathname, ; pathname, ; .. ."; export C6X_A_DIR
Windows set C6X_A_DIR= pathname, ; pathname, ; . . .
38 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Naming Alternate Directories for Assembler Input

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:

+ Pathnames must be separated with a semicolon.

* Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set C6X_A DIR= c:\path\one\to\tools ; c:\path\two\to\tools

* Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set C6X_A DIR=c:\first path\to\tools;d:\second path\to\tools

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy "copyl.asnt
.copy "copy2.asnt

Assume the following paths for the files:

UNIX: [tools/files/copyl.asm and /dsys/copy2.asm
Windows: c:\tools\files\copyl.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) C6X_A DI R="/dsys"; export C6X A DR

cl 6x --include_path=/tools/files source.asm
Windows set C6X_A Dl R=c:\dsys

cl 6x --include_path=c:\tools\files source.asm

The assembler first searches for copyl.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the --include_path
option and finds copyl.asm. Finally, the assembler searches the directory named with C6X_A_DIR and
finds copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

Operating System Enter
UNIX (Bourne shell) unset C6X_A DIR
Windows set C6X_A DI R=
SPRU186V-July 2011 Assembler Description 39

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Source Statement Format www.ti.com

3.6 Source Statement Format

TMS320C6000 assembly language source programs consist of source statements that can contain
assembler directives, assembly language instructions, macro directives, and comments. A source
statement can contain five ordered fields (label, mnemonic, unit specifier, operand list, and comment). The
general syntax for source statements is as follows:

‘[Iabel[:]] [II1 [[register]] mnemonic [unit specifier] [operand list][;comment]

A label can only be associated with the first instruction in an execute packet (a group of instructions that is
to be executed in parallel).

Following are examples of source statements:

two .set 2 ; Symbol Two = 2
Label: MK two,A2 ; Move 2 into register A2
.word 016h ; Initialize a word with 016h

There is no limit on characters per source statement. Use a backslash (\) to indicate continuation of the
same instruction/directive across multiple lines.

Follow these guidelines:

« All statements must begin with a label, a blank, an asterisk, or a semicolon.

* Labels are optional; if used, they must begin in column 1.

» One or more blanks must separate each field. Tab and space characters are blanks. You must
separate the operand list from the preceding field with a blank.

+ Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or;), but comments that begin in any other column must begin with a semicolon.

* In a conditional instruction, the condition register must be surrounded by square brackets.

» The functional unit specifier is optional. If you do not specify the functional unit, the assembler assigns
a legal functional unit based on the mnemonic field and the other instructions in the execute packet.

* A mnemonic cannot begin in column 1 or it will be interpreted as a label.
The following sections describe each of the fields.

40 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Source Statement Format

3.6.1

3.6.2

Label Field

Labels are optional for all assembly language instructions and for most (but not all) assembler directives.
When used, a label must begin in column 1 of a source statement. A label can contain up to 128
alphanumeric characters (A-Z, a-z, 0-9, _, and $). Labels are case sensitive (except when the
--syms_ignore_case option is used), and the first character cannot be a number. A label can be followed
by a colon (:). The colon is not treated as part of the label name. If you do not use a label, the first
character position must contain a blank, a semicolon, or an asterisk. You cannot use a label on an
instruction that is in parallel with a previous instruction.

When you use a label, its value is the current value of the SPC. The label points to the statement it is
associated with. For example, if you use the .word directive to initialize several words, a label points to the
first word. In the following example, the label Start has the value 40h.

9 * Assunme sone code was assenbl ed
10 00000040 O000000A Start: .word 0Ah, 3,7

00000044 00000003

00000048 00000007

The label assigns the current value of the section program counter to the label; this is equivalent to the
following directive statement:

label .equ $; $ provides the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next line (the SPC is not
incremented):

1 00000000 Her e:
2 00000000 00000003 .word 3

If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.

Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is
interpreted as a label. There is one exception: the parallel bars (||) of the mnemonic field can start in
column 1. The mnemonic field can begin with one of the following items:

» Parallel bars (]|) indicate instructions that are in parallel with a previous instruction. You can have up to
eight instructions that will be executed in parallel. The following example demonstrates six instructions
to be executed in parallel:

Inst1

I Inst2
Inst3 These five instructions run
Inst4 in parallel with the first
Inst5 instruction.

[Inst6
Inst7

» Square brackets ([]) indicate conditional instructions. The machine-instruction mnemonic is executed

based on the value of the register within the brackets; valid register names are AO for C64xx only, Al,
A2, BO, B1, and B2. These registers are often called predicate registers.

The instruction is executed if the value of the register is nonzero. If the register name is preceded by
an exclamation point (!), then the instruction is executed if the value of the register is 0. For example:
[Al] ZERO A2 ; |If Al is not equal to zero, A2 =0

The preceding exclamation point, if specified, is called a "logical NOT operator” or a "unary NOT
operator".

SPRU186V-July 2011 Assembler Description 41

Submit

Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Source Statement Format www.ti.com

Next, the mnemonic field contains one of the following items:
* Machine-instruction mnemonic (such as ADDK, MVKH, B)
« Assembler directive (such as .data, .list, .equ, .macro, .var, .mexit)
The || and "[predicate register]" contructs are not legal in combination with an assembler directive.
* Macro call

3.6.3 Unit Specifier Field
The unit specifier field is an optional field that follows the mnemonic field for machine-instruction
mnemonics. The unit specifier field begins with a period (.) followed by a functional unit specifier. In
general, one instruction can be assigned to each functional unit in a single instruction cycle. There are
eight functional units, two of each functional type:
.D1 and .D2 Data/addition/subtraction
.L1and .L2 ALU/compares/long data arithmetic
.M1 and .M2 Multiply
.S1 and .S2 Shift/ALU/branch/bit field
ALU refers to an arithmetic logic unit.
There are several ways to use the unit specifier field:
* You can specify the particular functional unit (for example, .D1).
* You can specify only the functional type (for example, .M), and the assembler assigns the specific unit
(for example, .M2).
+ If you do not specify the functional unit, the assembler assigns the functional unit based on the
mnemonic field, operand fields, and other instructions in the same execute packet.
For more information on functional units, including which assembly instructions require which functional
type, see the TMS320C62x DSP CPU and Instruction Set Reference Guide, TMS320C64x/C64x+ DSP
CPU and Instruction Set Reference Guide, or TMS320C67x/C67x+ DSP CPU and Instruction Set
Reference Guide.
3.6.4 Operand Field
The operand field follows the mnemonic field and contains one or more operands. The operand field is not
required for all instructions or directives. An operand consists of the following items:
» Constants (see Section 3.7)
« Character strings (see Section 3.8)
* Symbols (see Section 3.9)
» Expressions (combination of constants and symbols; see Section 3.10)
You must separate operands with commas.
3.6.5 Comment Field
A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.
A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.
42 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Constants

3.7 Constants

The assembler supports several types of constants:

* Binary integer

* Octal integer

+ Decimal integer

* Hexadecimal integer

* Character

* Assembly time

The assembler maintains each constant internally as a 32-bit quantity. Constants are not sign extended.

For example, the constant O0FFh is equal to O0FF (base 16) or 255 (base 10); it does not equal -1.
However, when used with the .byte directive, -1 is equivalent to O0FFh.

3.7.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (0s and 1s) followed by the suffix B (or b). If
fewer than 32 digits are specified, the assembler right justifies the value and fills the unspecified bits with
zeros. These are examples of valid binary constants:

00000000B Constant equal to 0,4 or 0,4
0100000b Constant equal to 32, or 20,4
01b Constant equal to 1, 0r 1,4
11111000B Constant equal to 248, or OF8,,

3.7.2 Octal Integers

An octal integer constant is a string of up to 11 octal digits (0 through 7) followed by the suffix Q (or q).
These are examples of valid octal constants:

10Q Constant equal to 8,, or 8,4

010 Constant equal to 8,, or 8,5 © format)
100000Q Constant equal to 32 768,, or 8000,
226¢ Constant equal to 150,, or 96,

3.7.3 Decimal Integers

A decimal integer constant is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295.
These are examples of valid decimal constants:

1000 Constant equal to 1000,, or 3E8,;
-32768 Constant equal to -32 768,, or 80004
25 Constant equal to 25,, or 19,4
SPRU186V-July 2011 Assembler Description 43

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

Constants www.ti.com
3.7.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits followed by the suffix H (or h)

or preceded by Ox. Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. A

hexadecimal constant must begin with a decimal value (0-9). If fewer than eight hexadecimal digits are

specified, the assembler right justifies the bits. These are examples of valid hexadecimal constants:

78h Constant equal to 120,, or 0078,

0x78 Constant equal to 120,, or 0078, © format)

OFh Constant equal to 15,, or 000F 4

37ACh Constant equal to 14 252,, or 37AC,¢
3.7.5 Character Constants

A character constant is a single character enclosed in single quotes. The characters are represented

internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single

guote that is part of a character constant. A character constant consisting only of two single quotes is valid

and is assigned the value 0. These are examples of valid character constants:

‘a’ Defines the character constant a and is represented internally as 61,4

'C' Defines the character constant C and is represented internally as 43,4

Defines the character constant ' and is represented internally as 27,

" Defines a null character and is represented internally as 00,4

Notice the difference between character constants and character strings (Section 3.8 discusses

character strings). A character constant represents a single integer value; a string is a sequence of

characters.
3.7.6 Assembly-Time Constants

If you use the .set directive to assign a value to a symbol (see Define Assembly-Time Constant), the

symbol becomes a constant. To use this constant in expressions, the value that is assigned to it must be

absolute. For example:

sym .set 3

MWK sym Bl

You can also use the .set directive to assign symbolic constants for register names. In this case, the

symbol becomes a synonym for the register:

sym .set Bl

MWK 10, sym

44 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com Character Strings
3.8 Character Strings

A character string is a string of characters enclosed in double quotes. Double quotes that are part of

character strings are represented by two consecutive double quotes. The maximum length of a string

varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.

"PLAN""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

* Filenames, as in .copy "“filename"

+ Section names, as in .sect "section name"

+ Data initialization directives, as in .byte "charstring"

* Operands of .string directives

3.9 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol name is a string of

alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character in a

symbol cannot be a number, and symbols cannot contain embedded blanks. The symbols you define are

case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three unique symbols. You
can override case sensitivity with the --syms_ignore_case assembler option (see Section 3.3). A symbol is
valid only during the assembly in which it is defined, unless you use the .global directive or the .def
directive to declare it as an external symbol (see Identify Global Symbols).

3.9.1 Labels

Symbols used as labels become symbolic addresses that are associated with locations in the program.

Labels used locally within a file must be uniqgue. Mnemonic opcodes and assembler directive names

without the . prefix are valid label names.

Labels can also be used as the operands of .global, .ref, .def, or .bss directives; for example:

.global |abell
| abel 2: MVKL | abel 2, B3
MVKH |abel 2, B3
B | abel 1
NOP 5
3.9.2 Local Labels

Local labels are special labels whose scope and effect are temporary. A local label can be defined in two

ways:

* $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 3-1.

* name?, where name is any legal symbol name as described above. The assembler replaces the
question mark with a period followed by a unique number. When the source code is expanded, you will
not see the unique number in the listing file. Your label appears with the question mark as it did in the
source definition. You cannot declare this label as global. See Example 3-2.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the

operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined

by directives.
SPRU186V-July 2011 Assembler Description 45

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Symbols

13 TEXAS
INSTRUMENTS

www.ti.com

A local label can be undefined or reset in one of these ways:

* By using the .newblock directive

* By changing sections (using a .sect, .text, or .data directive)

* By entering an include file (specified by the .include or .copy directive)
* By leaving an include file (specified by the .include or .copy directive)

Example 3-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

$1:
SUB A1, 1, Al
[A1] B $1
SUBC A3, A0, A3
NOP 4
. newbl ock ; undefine $1 to use it again
$1 SUB A2,1,A2
[A2] B $1
MPY A3, A3, A3
NOP 4

The following code uses a local label illegally:

$1:
SuB
[Al] B
SUBC
NOP
$1 SUB
[A2] B
MPY
NOP

Al
$1
A3

N

A2

@
-

A3
4

, 1, A1
, A0, A3
,1,A2 ; WRONG - $1 is nmultiply defined

, A3, A3

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is
redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not
limited. After you undefine a local label, you can define it and use it again. Local labels do not appear in
the object code symbol table.

Because local labels are intended to be used only locally, branches to local labels are not expanded in
case the branch's offset is out of range.

46 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Symbols

Example 3-2. Local Labels of the Form name?

khkhkhkhkhhhhhhhhhhhhhhhkhhhhkhkhhkhkhkhkhkhhkhhkhkhkhkhkhkkhkhkhkhkhkhkkkhkhkhkkkkkkkkkk*k*k*k*x*%

** First definition of l|ocal |abel nylab *x
R R R O O S kR R R R O
nop

myl ab? nop
B nyl ab?
nop 5

L R X

** |nclude file has second definition of nylab >
khkhkhkhkhhhhhhhhhhhhhhhkhhhhkhkhhkhhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkk*k*k*k*x*%

.copy "a.inc"

Khkhhkhhhkhhkhhkhhhhhkhhkhhkhhhkhhkhhkhhhhhkhhkhhhhhkhhkhhhkhhkhhkhkhkhkhkhkhhkkhkkh k%

** Third definition of nylab, reset upon exit from.include **
IR E R R RS SRR EEEEEEEEEEEEEEEEEEEREEEREEEEEEEEEREEREEREEEEEEEEEEEEEEEEE]
nyl ab? nop

B nyl ab?

nop 5
EE R I I I R I R R R I S R R R R I I R R R I I I O S
** Fourth definition of nylab in macro, nacros use different **
** pamespace to avoid conflicts *x
R I I I I I R I R R R I I R R R R R S R R R O I I O S I
nmymac . macro
nmyl ab? nop

B nyl ab?

nop 5

.endm

Khkhhkhhhkhhkhhkhhhkhhhhkhhkhhhkhhkhhkhhhkhhkhhkhhkhhkhhkhhkhkhkhhkhhkkhkhkhhkkhkk k%

** Macro invocation * %

L X

nmy mac
IR EE R E R RS EEEE SRS EEEEEEEEEEEEEEEE SRR EEREEREEREEREEEEEEREEREERESEESEEEEEEES]
** Reference to third definition of nylab. Definition is not **
** reset by macro invocation. * %
IR EE R E R RS R EEE SRS EEEEEEEEEEEEEEEEEEEEEEEREEREREEEEEEEEREEREESEEEEESEES]
B nyl ab?
nop 5

khkhkhkhkhhhhhhhhhhhhhhhhhhhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkkkkkkk*k**k*x*%

** Changing section, allowing fifth definition of mnylab *x
R R I O kR R R R O R
.sect "Sect_One"
nop
nyl ab? .word O
nop
nop
B nyl ab?
nop 5

L X

** The .newbl ock directive allows sixth definition of nmylab **
khkhkhkhkhkhkhhkhhhhhhhhhhhkhhhhhkhhkhkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkk*k*k**x*%

. newbl ock
nyl ab? .word O

nop

nop

B nyl ab?

nop 5

SPRU186V-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Assembler Description

47

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS
Symbols www.ti.com
3.9.3 Symbolic Constants

3.94

Symbols can be set to constant values. By using constants, you can equate meaningful names with
constant values. The .set and .struct/.tag/.endstruct directives enable you to set constants to symbolic
names. Symbolic constants cannot be redefined. The following example shows how these directives can

be used:

K .set 1024
maxbuf .set 2*K

item .struct
value .int

delta .int

i_len .endstruct

array .tag item

.bss array, i_len*K;

.text

constant definitions

itemstructure definition

val ue offset = 0
delta offset = 4
item size =8

declare an array of K "itens"

LDW *+Bl4(array.delta + 2*i_len), Al

access array [2].delta

The assembler also has several predefined symbolic constants; these are discussed in Section 3.9.5.

Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used
in place of a value in assembly source. The format of the --asm_define option is as follows:

cl6x --asm_define=name[=value]

The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

* For Windows, use --asm_define= name ="\" value \
* For UNIX, use --asm_define= name =" value "'. For example, --asm_define=car=

. For example, --asm_define=car="\"sedan\
sedan

» For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.

Once you have defined the name with the --asm_define option, the symbol can be used in place of a
constant value, a well-defined expression, or an otherwise undefined symbol used with assembly

directives and instructions. For example, on the command line you enter:

cl 6x --asm defi ne=SYML=1 --asm defi ne=SYM2=2 --asm defi ne=SYM3=3 --asm defi ne=SYM4=4 val ue. asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
Example 3-3 shows how the value.asm file uses these symbols without defining them explicitly.

Within assembler source, you can test the symbol defined with the --asm_define option with the following

directives:

Type of Test

Directive Usage

Existence

Nonexistence
Equal to value
Not equal to value

if Sisdefed(" name ")
if $isdefed(" name ") =0
.if name = value

.if name !=value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the

argument to be interpreted literally rather than as a substitution symbol.

48

Assembler Description

Copyright © 2011, Texas Instruments Incorporated

SPRU186V-July 2011

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Symbols

Example 3-3. Using Symbolic Constants Defined on Command Line

IF_4:if SYM4 = SYM * SYMR
.byte SYM4 ; Equal val ues
. el se
. byte SYm * Syme ; Unequal val ues
.endif

IF_5: .if SYML <= 10
.byte 10 ; Less than / equal
. el se
.byte SYmL ; Greater than
.endif

IF_6: .if SYMB * SYM2 | = SYM4 + SYM
.byte SYMB * SYmR ; Unequal val ue
. el se
. byte SYM4 + SYM ; Equal val ues
.endif

IF_7: .if SYML = SYM
.byte SYmL
.elseif SYM2 + SYMB = 5
. byte SYM2 + SYMB
.endif

3.9.5 Predefined Symbolic Constants

The assembler has several predefined symbols, including the following types:

+ $, the dollar-sign character, represents the current value of the section program counter (SPC). $ is a

relocatable symbol.

* Register symbols, including A0-A15 and B0-B15; and A16-31 and B16-31 for C6400, C6400+,
C6700+, C6740, and C6600.

* CPU control registers, including those listed in Table 3-2. Control registers can be entered as all

upper-case or all lower-case characters; for example, CSR can also be entered as csr.
* Processor symbols, including those listed in Table 3-3.

Table 3-2. CPU Control Registers

Register Description

AMR Addressing mode register

CSR Control status register

DESR (C6700+ only) dMAX event status register

DETR (C6700+ only) dMAX event trigger register

DNUM (C6400+, C6740, C6600 only) DSP core number register

ECR (C6400+, C6740, C6600 only) Exception clear register

EFR (C6400+, C6740, C6600 only) Exception flag register

FADCR (C6700, C6700+, C6740, C6600 only) Floating-point adder configuration register

FAUCR (C6700, C6700+, C6740, C6600 only) Floating-point auxiliary configuration
register

FMCR (C6_700, C6700+, C6740, C6600 only) Floating-point multiplier configuration
register

GFPGFR (C6400 only) Galois field polynomial generator function register

GPLYA (C6400+, C6740, C6600 only) GMPY A-side polynomial register

GPLYB (C6400+, C6740, C6600 only) GMPY B-side polynomial register

ICR Interrupt clear register

SPRU186V-July 2011
Submit Documentation Feedback

Assembler Description

Copyright © 2011, Texas Instruments Incorporated

49

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

Copyright © 2011, Texas Instruments Incorporated

INSTRUMENTS
Symbols www.ti.com
Table 3-2. CPU Control Registers (continued)
Register Description
IER Interrupt enable register
IERR (C6400+, C6740, C6600 only) Interrupt exception report register
IFR Interrupt flag register
ILC (C6400+, C6740, C6600 only) Inner loop count register
NRP Nonmaskable interrupt return pointer
IRP Interrupt return pointer
ISR Interrupt set register
ITSR (C6400+, C6740, C6600 only) Interrupt task state register
ISTP Interrupt service table pointer
NTSR (C6400+, C6740, C6600 only) NMI/Exception task state register
PCE1 Program counter
REP (C6400+, C6740, C6600 only) Restricted entry point address register
RILC (C6400+, C6740, C6600 only) Reload inner loop count register
SSR (C6400+, C6740, C6600 only) Saturation status register
TSCH (C6400+, C6740, C6600 only) Time-stamp counter (high 32) register
TSCL (C6400+, C6740, C6600 only) Time-stamp counter (low 32) register
TSR (C6400+, C6740, C6600 only) Task status register
Table 3-3. Processor Symbols
Symbol name Description
_ _TI_EABI_ _ Set to 1 if EABI is enabled (see Section 3.4); otherwise, it is set to 0
.TMS320C6X Always set to 1
.TMS320C6200 Set to 1 if target is C6200, otherwise 0
.TMS320C6400 Set to 1 if target is C6400, C6400+, C6740, or C6600; otherwise 0
.TMS320C6400_PLUS Set to 1 if target is C6400+, C6740, or C6600; otherwise 0
.TMS320C6600 Set to 1 if target is C6600, otherwise 0
.TMS320C6700 Set to 1 if target is C6700, C6700+, C6740, or C6600; otherwise 0
.TMS320C6700_PLUS Set to 1 if target is C6700+, C6740, or C6600; otherwise 0
.TMS320C6740 Set to 1 if target is C6740 or C6600, otherwise 0
.LITTLE_ENDIAN Set to 1 if little-endian mode is selected (the -me assembler option is not
used); otherwise 0
.ASSEMBLER_VERSION Set to major * 1000000 + minor * 1000 + patch version.
.BIG_ENDIAN Set to 1 if big-endian mode is selected (the -me assembler option is used);
otherwise 0
.SMALL_MODEL Set to 1 if --memory_model:code=near and --memory_model:data=near,
otherwise 0.
.LARGE_MODEL Set to 1 if . SMALL_MODEL is 0, otherwise 0.
50 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Symbols

3.9.6 Register Pairs

Many instructions in the C6000 instruction set across the various available target processors (C6200,
C6400, C6400+, etc.) support a 64-bit register operand which can be specified as a register pair.

A register pair should be specified on the A side or the B side, depending on which functional unit an
instruction is to be executed on, and whether a cross functional unit data path is utilized by the instruction.
You cannot mix A-side and B-side registers in the same register pair operand.

The syntax for a register pair is as follows where (n%2 == 0):

Rn+1:Rn

The legal register pairs are:

Al:AO0 B1:BO
A3:A2 B3:B2
A5:A4 B5:B4
A7:A6 B7:B6
A9:A8 B9:B8
Al11l:A10 B11:B10
Al3:A12 B13:B12
Al15:A14 B15:B14

In addition, these register pairs are available on C6400, C6400+, C6600 (not C62xx or C67xX):

Al17:A16 B17:B16
Al19:A18 B19:B18
A21:A20 B21:B20
A23:A22 B23:B22
A25:A24 B25:B24
A27:A26 B27:B26
A29:A30 B29:B30
A31:A32 B31:B32

Here is an example of an ADD instruction that uses a register pair operand:
ADD. L1 AS: A4, Al, A3: A2

For details on using register pairs in linear assembly, see the TMS320C6000 Optimizing Compiler User's
Guide.

For more information on functional units, including which assembly instructions require which functional
type, see the TMS320C62x DSP CPU and Instruction Set Reference Guide, TMS320C64x/C64x+ DSP
CPU and Instruction Set Reference Guide, TMS320C67x/C67x+ DSP CPU and Instruction Set Reference
Guide, or TMS320C66x CPU and Instruction Set Reference Guide.

SPRU186V-July 2011 Assembler Description 51

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Symbols www.ti.com

3.9.7

3.9.8

Register Quads (C6600 Only)

Several instructions in the C6600 instruction set support a 128-bit register operand which can be specified
as a register quad.

A register quad should be specified on the A side or the B side, depending on which functional unit an
instruction is to be executed on, and whether a cross functional unit data path is utilized by the instruction.
You cannot mix A-side and B-side registers in the same register quad operand.

The general syntax for a register quad is as follows, where (n%4 == 0):

Rn+3:Rn+2:Rn+1:Rn or Rn+3::Rn

The legal register quads are:

A Register Quads Short Form B Register Quads Short Form
A3:A2:A1:A0 A3::A0 B3:B2:B1:BO B3::BO
A7:A6:A5:A4 A7::A4 B7:B6:B5:B4 B7::B4

Al11:A10:A9:A8 Al11::A8 B11:B10:B9:B8 B11::B8

A15:A14:A13:A12 A15::A12 B15:B14:B13:B12 B15::B12

A19:A18:A17:A16 A19::A16 B19:B18:B17:B16 B19::B16

A23:A22:A21:A20 A23::A20 B23:B22:B21:B20 B23::B20

A27:A26:A25:A24 A27::A24 B27:B26:B25:B24 B27::B24

A31:A30:A29:A28 A31::A28 B31:B30:B29:B28 B31::B28

Here is an example of an ADD instruction that uses register quad operands:
QWYSP .M A27: A26: A25: A24, Al1: A10: A9: A8, Al19: A18: Al7: Al6

For details on using register quads in C6600 linear assembly, see the TMS320C6000 Optimizing Compiler
User's Guide.

For more information on functional units, including which assembly instructions require which functional
type, see the TMS320C66x CPU and Instruction Set Reference Guide.

Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias character strings by equating
them to symbolic names. Symbols that represent character strings are called substitution symbols. When
the assembler encounters a substitution symbol, its string value is substituted for the symbol name. Unlike
symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:
.global _table

.asg "B14", PAGEPTR

.asg "*+Bl15(4)", LOCAL1
.asg "*+B15(8)", LOCAL2
LDW * +PAGEPTR(_t abl e) , AO
NOP 4

STW A0, LOCAL1

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution
symbols are used in macros:

MAC .macro srcl, src2, dst ; Miltiply/Accunul ate nacro
MPY srcl, src2, src2
NOP
ADD src2, dst, dst
.endm

* MAC macro invocation
MAC AO, Al, A2

See Chapter 5 for more information about macros.

52

Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

3.10 Expressions

An expression is a constant, a symbol, or a series of constants and symbols separated by arithmetic
operators. The 32-bit ranges of valid expression values are -2147 483 648 to 2147 483 647 for signed
values, and 0 to 4 294 967 295 for unsigned values. Three main factors influence the order of expression
evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8/(4/2)=4,but8/4/2=1
You cannot substitute braces ({}) or brackets ([]) for parentheses.

Precedence groups Operators, listed in Table 3-4, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.

8+4/2=10(4/2is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.

8/4*2=4,but8/(4*2) = 1

3.10.1 Operators

Table 3-4 lists the operators that can be used in expressions, according to precedence group.

Table 3-4. Operators Used in Expressions (Precedence)

Group @ Operator Description @
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
1= Not equal to
7 & Bitwise AND
8 A Bitwise exclusive OR (XOR)
9 | Bitwise OR

@ Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
@ Unary + and - have higher precedence than the binary forms.

3.10.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic operations are performed at
assembly time. It issues a warning (the message Value Truncated) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

SPRU186V-July 2011 Assembler Description 53

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Expressions www.ti.com

3.10.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands. Well-defined expressions
contain only symbols or assembly-time constants that are defined before they are encountered in the
expression. The evaluation of a well-defined expression must be absolute.

This is an example of a well-defined expression:
1000h+X

where X was previously defined as an absolute symbol.

3.10.4 Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:

= Equal to = Not equal to
< Less than <= Less than or equal to
> Greater than >= Greater than or equal to

Conditional expressions evaluate to 1 if true and O if false and can be used only on operands of
equivalent types; for example, absolute value compared to absolute value, but not absolute value
compared to relocatable value.

3.10.5 Legal Expressions

With the exception of the following expression contexts, there is no restriction on combinations of
operations, constants, internally defined symbols, and externally defined symbols.

When an expression contains more than one relocatable symbol or cannot be evaluated at assembly time,
the assembler encodes a relocation expression in the object file that is later evaluated by the linker. If the
final value of the expression is larger in bits than the space reserved for it, you receive an error message
from the linker. See Section 2.4 for more information on relocation expressions.

* When using the register relative addressing mode, the expression in brackets or parenthesis must be a
well-defined expression, as described in Section 3.10.3. For example:
*+AA4[15]
» Expressions used to describe the offset in register relative addressing mode for the registers B14 and

B15, or expressions used as the operand to the branch instruction, are subject to the same limitations.
For these two cases, all legal expressions can be reduced to one of two forms:

* +XA4[7]
relocatable symbol =+ absolute symbol B (extern_1-10)
or
a well-defined expression *+B14/ B15[14]
54 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

3.10.6 Expression Examples

Following are examples of expressions that use relocatable and absolute symbols. These examples use
four symbols that are defined in the same section:

.global extern_1 ; Defined in an external nodul e

intern_1: .word '"D ; Relocatable, defined in
; current nodul e

intern_2 ; Relocatable, defined in
; current nodul e

intern_3 ; Relocatable, defined in

current nodul e
+ Example 1

In these contexts, there are no limitations on how expressions can be formed.
.word extern_1 * intern_2 - 13 ; Legal

MVKL (intern_1 - extern_1),Al ; Legal
+ Example 2

The first statement in the following example is valid; the statements that follow it are invalid.

B (extern_1 - 10) ; Legal

B (10-extern_1) ; Can't negate reloc. synbol
LDW*+B14 (-(intern_1)), Al ; Can't negate reloc. synbol
LDW *+B14 (extern_1/10), Al ; / not an additive operator
B (intern_1 + extern_1) ; Multiple relocatabl es

+ Example 3

The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is
absolute because they are in the same section. Subtracting one relocatable symbol from another
reduces the expression to relocatable symbol + absolute value. The second statement is illegal
because the sum of two relocatable symbols is not an absolute value.

B (intern_1 - intern_2 + extern_3) ; Legal

B (intern_1 + intern_2 + extern_3) ;111 egal
+ Example 4

A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of
left-to-right operator precedence; the assembler attempts to add intern_1 to extern_3.

B (intern_1 + extern_3 - intern_2) ;111 egal

SPRU186V-July 2011 Assembler Description 55

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Built-in Functions and Operators www.ti.com

3.11 Built-in Functions and Operators
The assembler supports built-in mathematical functions and built-in addressing operators.

3.11.1 Built-In Math and Trigonometric Functions

The assembler supports built-in functions for conversions and various math computations. Table 3-5
describes the built-in functions. The expr must be a constant value.

The built-in substitution symbol functions are discussed in Section 5.3.2.

Table 3-5. Built-In Mathematical Functions

Function Description

$acos(expr) Returns the arc cosine of expr as a floating-point value
$asin(expr) Returns the arc sin of expr as a floating-point value
$atan(expr) Returns the arc tangent of expr as a floating-point value
$atan2(expr, y) Returns the arc tangent of expr as a floating-point value in range [-11, 1]
$ceil(expr) Returns the smallest integer not less than expr

$cos(expr) Returns the cosine of expr as a floating-point value
$cosh(expr) Returns the hyperbolic cosine of expr as a floating-point value
$cvf(expr) Converts expr to a floating-point value

$cvi(expr) converts expr to integer value

$exp(expr) Returns the exponential function e &

$fabs(expr) Returns the absolute value of expr as a floating-point value

$floor(expr)
$fmod(expr, y)

Returns the largest integer not greater than expr
Returns the remainder of exprl + expr2

$int(expr) Returns 1 if expr has an integer value; else returns 0. Returns an integer.
$ldexp(expr, expr2) Multiplies expr by an integer power of 2. That is, exprl x 2 2
$log(expr) Returns the natural logarithm of expr, where expr>0

$log10(expr) Returns the base 10 logarithm of expr, where expr>0

$max(exprl, expr2)
$min(exprl, expr2)
$pow(exprl, expr2)

Returns the maximum of two values
Returns the minimum of two values
Returns exprlraised to the power of expr2

$round(expr) Returns expr rounded to the nearest integer

$sgn(expr) Returns the sign of expr.

$sin(expr) Returns the sine of expr

$sinh(expr) Returns the hyperbolic sine of expr as a floating-point value
$sqrt(expr) Returns the square root of expr, expr=0, as a floating-point value
$tan(expr) Returns the tangent of expr as a floating-point value

$tanh(expr) Returns the hyperbolic tangent of expr as a floating-point value
$trunc(expr) Returns expr rounded toward 0

Assembler Description

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Built-in Functions and Operators
3.11.2 C6x Built-In Operators

The assembler supports several C6x-specific operators that are used in compiler-generated code to
support various forms of DP-relative and PC-relative addressing instruction sequences. For more detailed
information about DP-relative and PC-relative addressing instruction sequences, please see The C6000
Embedded Application Binary Interface Application Report (SPRAB89).

3.11.2.1 $DPR_BYTE(sym)/$DPR_HWORD(sym) / $DPR_WORD(sym)

The $DPR_BYTE(sym), $DPR_HWORD(sym), or $DPR_WORD(sym) operator can be applied in the
source operand of a MVKL or MVKH instruction to load the DP-relative offset of a symbol's address into a
register. These operators are used by the compiler when accessing data objects that are not within the
signed 15-bit offset range that is needed for using the DP-relative addressing mode.

For example, suppose the compiler needs to access a 32-bit aligned data object called 'xyz' that is defined
in the .far section. The compiler must assume that the .far section is too far away from the base of the
.bss section (whose address the runtime library's boot routine has loaded into the DP register), so using
DP-relative addressing mode to access 'xyz' directly is not possible. Instead, the compiler will use a
MVKL/MVKH/LDW sequence of instructions:

MVKL $DPR_WORD(xyz) , AO ; load (xyz - $bss)/4 into AO
MVKH $DPR_WORD(xyz) , A0
LDW *+DP[AO], Al ; load *xyz into Al

This sequence of instructions is also referred to as far DP-relative addressing. The LDW instruction uses a
scaled version of DP-relative indexed addressing. Similar to the $DPR_WORD(sym) operator, the
$DPR_BYTE(sym) operator is provided to facilitate far DP-relative addressing of 8-bit data objects:

MVKL $DPR_BYTE(xyz), A0 ; load (xyz - $bss) into A0

MVKH $DPR_BYTE(xyz), A0

LDB *+DP[AO], Al ; load *xyz into Al
The $DPR_HWORD(sym) operator is provided to facilitate far DP-relative addressing of 16-bit data
objects:

MVKL $DPR_HWORD(xyz), AO ; load (xyz - $bss)/2 into AO

MVKH $DPR_HWORD(xyz) , AO

LDH *+DP[AO], Al ; load *xyz into Al

For code on processors that are not compatible with C64x+, the compiler also uses these operators when
it needs to take the address of an object that is within signed 16-bit range of the DP. For example, the
compiler can compute the address of an 8-bit data object in the .bss section:

MK $DPR _BYTE(_char _X), A4 ; load (_char_X - $bss) into A4
ADD DP, A4, A4 ; conpute address of _char_X
Similarly, the compiler can compute the address of a 16-bit data object that is defined in the .bss section:
MK $DPR_HWORD(_short_X), A4 ; load (_short_X - $bss)/2 into Ad
ADD DP, A4, A4 ; conpute address of _short_X
It can also compute a 32-bit data object that is defined in the .bss section:
MK $DPR WORD(_i nt _X), A4 ; load (_int_X - $bss)/4 into A4
ADD DP, A4, A4 ; compute address of _int_X

These operators were added to the assembler to assist in migrating existing COFF code, which used
expressions like 'xyz - $bss' to indicate DP-relative access to the address of a data object, to ELF code
which is able to resolve the DP-relative offset calculation with a single relocation.
In summary:

$DPR_BYTE(sym) is equivalent to 'sym - $bss'

$DPR_HWORD(sym) is equivalent to '(sym - $bss)/2'

$DPR_WORD(sym) is equivalent to '(sym - $bss)/4'

SPRU186V-July 2011 Assembler Description 57

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Built-in Functions and Operators www.ti.com

3.11.2.2 $GOT(sym)/ $DPR_GOT(sym)

The $GOT(sym) operator can be applied in the source operand of an LDW instruction. The
$DPR_GOT(sym) operator can be applied in the source operand of a MVKL or MVKH instruction. These
operators are used in the context of compiler-generated code under a dynamic linking ABI (either the
Bare-Metal or Linux Dynamic Linking Model; see the external wiki
(http://processors.wiki.ti.com/index.php/C6000 Dynamic Linking) for more details on the dynamic linking
models supported in the C6000 Code Generation Tools (CGT)).

Symbols that are preemptable or are imported by a dynamic module will be accessed via the Global Offset
Table (GOT). A GOT entry for a symbol will contain the address of the symbol as it is determined at
dynamic load time. To facilitate this resolution, the static linker will emit a dynamic relocation entry that is
to be processed by the dynamic linker/loader. For more information on the GOT, see the Dynamic Linking
wiki site or The C6000 Embedded Application Binary Interface Application Report (SPRAB89).

If the GOT entry for a symbol, xyz, is accessible using DP-relative addressing mode, then the compiler will
generate a sequence to load the symbol that uses the $GOT(sym) opOerator as the offset part of the
DP-relative addressing mode operand:

LDW *+DP[$GOT(xyz)], A0 ; load address of xyz into AO
; via access to GOT entry
LDW *AQ, Al ; load xyz into A2

The actual semantics of the $GOT(sym) operator is to return the DP- relative offset of the GOT entry for
the referenced symbol (xyz above).

While $DPR_GOT(sym) is semantically similar to the $GOT(sym) operator, it is used when the GOT is not
accessible using DP-relative addressing mode (offset is not within signed 15-bit range of the static base
address that is loaded into the data pointer register (DP)). The DP-relative offset to the GOT entry is then
loaded into an index register using a MVKL/MVKH instruction sequence, and the GOT entry is then
accessed via DP-relative indexed addressing to load the address of the referenced symbol:

MVKL $DPR_GOT(xyz), A0 ; load DP-rel ative offset of

MVKH $DPR_GOT(xyz), A0 ; GOT entry for xyz into AO

LDW *+DP[AO], Al ; get address of xyz via GOT entry
LDW *Al, A2 ; load xyz into A2

3.11.2.3 $PCR_OFFSET(x,y)

The $PCR_OFFSET(x,y) operator can be applied in the source operand of a MVKL, MVKH, or ADDK
instruction to compute a PC-relative offset to be loaded into (in the case of MVKL/MVKH) or added to (in
the case of ADDK) a register.

This operator is used in the context of compiler-generated code under the Linux ABI (using --linux
compiler option). It helps the compiler to generate position-independent code by accessing a symbol that
is defined in the same RO segment using PC-relative addressing.

For example, if there is to be a call to a function defined in the same file, but you would like to avoid
generating a dynamic relocation that accesses the symbol that represents the destination of the call, then
you can use the $PCR_OFFSET operator as follows:

dest:
<code>

make_pcr_call :
WC PCE1, BO ; set up PC reference point in BO
MVKL $PCR_OFFSET(dest, mamke_pcr_call), Bl ; conpute dest - nake_pcr_call
MVKH $PCR_OFFSET(dest, make_pcr_call), Bl ; and load it into Bl
ADD BO, B1, BO ; conpute dest address into BO register
B BO ; call dest indirectly through BO

The above code sequence is position independent. No matter what address 'dest' is placed at load time,
the call to 'dest' will still work since it is independent of the actual address of 'dest'. However, the call does
have to maintain its position relative to the definition of 'dest'.

58

Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Built-in Functions and Operators

3.11.2.

Also in the above sequence, the compiler creates a coupling between the MVC instruction and the
'make_pcr_call' label. The 'make_pcr_call' label must be associated with the address of the MVC
instruction so that when the $PCR_OFFSET(dest, make_pcr_call) operator is applied, the 'make_pcr_call'
symbol becomes a representative for the PC reference point. This means that the result of 'dest -
make_pcr_call' becomes the PC-relative offset which when added to the PC reference point in BO gives
the address of 'dest'.

The relocation that is generated for the $PCR_OFFSET() operator is handled during the static link step in
which a dynamic module is built. This static relocation can then be discarded and no dynamic relocation
will be needed to resolve the call to 'dest' in the above example.

4 $LABEL_DIFF(x,y) Operator

The $LABEL_DIFF(x,y) operator can be applied to an argument for a 32-bit data-defining directive (like
.word, for example). The operator simply computes the difference between two labels that are defined in
the same section. This operator is sometimes used by the compiler under the Linux ABI (--linux compiler
option) when generating position independent code for a switch statement.

For example, in Example 3-4 a switch table is generated which contains the PC-relative offsets of the
switch case labels:

Example 3-4. Generating a Switch Table With Offset Switch Case Labels

ok k ok ok
’

.asg Al5, FP
.asg Bl4, DP
.asg B15, SP

. gl obal $bss

.sect ".text"
.clink
. gl obal nyfunc

R R R R R R R

;* FUNCTI ON NAME: nyfunc *

Ckk ok ok
’

nyfun

-k ok
’

IR E RS S S SRR R SRR SR SRS EEEREEEEEEEEEEEEREE S
C.

B.SL CL10

SUB .L2X A4, 10, B5

STW.D2T2 B3, *SP--(16)

CMPGTU . L2 BS, 7, BO

STW.D2T1 A4, *+SP(12)

MW . S2X A4, B4

[BO] BNOP .S1 CL9, 3

BRANCH OCCURS { CL10} ; | 6|

<case 4 code>

SPRU186V-July 2011 Assembler Description 59
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Built-in Functions and Operators

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3-4. Generating a Switch Table With Offset Switch Case Labels (continued)

’**
$CHL6
<case 5 code>
$CHL7
<case 6 code>
-k ok
CL8
<case 7 code>
’**
$CHLI9
<default case code>
CL10
NOP 2
; BRANCHCC OCCURS {CL9} {-9}
* %

SUB . L2 B4, 10, B5 ; Normswitch value -> switch table index
| ADDKPC .S2 CSWL, B4,0 ; Load address of switch table to B4
LDW.D2T2 *+B4[B5],B5 ; Load PC-relative offset fromswitch table

NOP 4
ADD . L2 B5, B4, B4 ; Conbine to get case |abel
BNOP . S2 B4, 5 ; Branch to case | abel

BRANCH OCCURS { B4}

; Switch table definition
.align 32
.clink

CSWL: . nocnp
.word $LABEL_DI FF($C$L1, CSWL)
.word $LABEL_DI FF($C$L2, CSWL)
.word $LABEL_DI FF(CL3, CSW)
.word $LABEL_DI FF($C$L4, CSWL)
.word $LABEL_DI FF(CL5, CSWL)
.word $LABEL_DI FF(CL6, CSWL)
.word $LABEL_DI FF($C$L7, CSWL)
.word $LABEL_DI FF(CL8, CSWL)
.align 32
.sect ".text"

10
11
12
13
14
15
16
17

into B5

Example 3-4 mixes data into the code section. For C64+ compatible processors, compression will be
disabled for the code section that contains the $LABEL_DIFF() operator since the label difference must

resolve to a constant value at assembly time.

60 Assembler Description

Copyright © 2011, Texas Instruments Incorporated

SPRU186V-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Source Listings

3.12 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the --asm_listing option (see Section 3.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. and show these in actual
listing files.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 3-2 shows these in
an actual listing file.
Field 1: Source Statement Number

Line number

The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.

Include file letter

A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.

Nesting level number
A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter
This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.
Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

! undefined external reference
! .text relocatable

+ .sect relocatable

" .data relocatable

- .bss, .usect relocatable

% relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the
spacing in the source statement.

Figure 3-2 shows an assembler listing with each of the four fields identified.

SPRU186V-July 2011 Assembler Description 61

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Source Listings www.ti.com

Figure 3-2. Example Assembler Listing

Include file
letter Nesting level Line number
number
|
1 IR RS S SRS S S S SRS EEE SRR SRR R RS EEEEE R EEEEEEEEEEEE
2 ** Global variables
3 IR R R SRR SRS S SRS S SR SRR SRR R RS SRR R EEEEEEEEEEE R
4 00000000 .bss varl, 4
5 00000004 .bss var2, 4
6
7 IR R RS SRS S SRS SRS E SRS R RS SRR R R EEEEE R EEEEEEEEEEEE
8 ** Include multiply macro
9 IR R R SRR SRS S SRS S EE SRS R RS SRR R RS SRR R R EEEEEEEEEEEE
10 .copy mpy32.inc
A 1 mpy32 .macro A,B
A 2
A 3 MPYLH.M1 A,B,A ; tmpl = A.lo * B.hi
A 4 || MPYHL.M2 A,B,B ; tmp2 = A.hi * B.lo
A 5
A 6 MPYU.M2 A,B,B ; tmp3 = A.lo * B.lo
A 7
A 8 ADD.L1 A,B,A ; A = tmpl + tmp2
A 9
A 10 SHL.S1 A,16,A ; A <<= 16
A 11
A 12 ADD.L1 B,A,A ; A=A + tmp3
A 13 .endm
11
12 IR R RS SRS S S S SRS SRS EE SRR EEEEEEEEEEEEEEEEEEEEEEEE
13 ** func multiplies 2 global ints
14 IR R RS SRS S S S SRS SRS EEE SRR SRR R RS SRR R R EEEEEEEEEEEE
15 00000000 .text
16 00000000 _func
17 00000000 0200006C- LDW *+Bl4 (varl), Ad
18 00000004 0000016E- LDW *+Bl4 (var2),B0
19 00000008 00006000 NOP 4
20 0000000c mpy32 A4,BO
1
1 0000000c 02009881 MPYLH.M1 A4,B0,A4 ; tmpl = A.lo * B.hi
1 00000010 00101882 || MPYHL.M2 A4,B0,BO ; tmp2 = A.hi * B.lo
1
1 00000014 00101F82 MPYU.M2 A4,B0,BO ; tmp3 = A.lo * B.lo
1
1 00000018 02009078 ADD.L1 A4,B0,A4 ; A = tmpl + tmp2
1
1 0000001c 02120CA0 SHL.S1 A4,16,A4 ; A <<= 16
1
1 00000020 02009078 ADD.L1 B0,A4,A4 ; A = A + tmp3
21 00000024 000C6362 B B3
22 00000028 00008000 NOP 5
23 * end _func
N —
Field 1 Field 2 Field 3 Field 4
62 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

TEXAS
INSTRUMENTS

www.ti.com Debugging Assembly Source

3.13 Debugging Assembly Source

When you invoke cl6x with --symdebug:dwarf (or -g) when compiling an assembily file, the assembler
provides symbolic debugging information that allows you to step through your assembly code in a
debugger rather than using the Disassembly window in Code Composer Studio. This enables you to view
source comments and other source-code annotations while debugging.

The .asmfunc and .endasmfunc (see Mark Function Boundaries) directives enable you to use C
characteristics in assembly code that makes the process of debugging an assembly file more closely
resemble debugging a C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

‘$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see Identify Global Symbols).

Example 3-5 shows the cvar.c C program that defines a variable, svar, as the structure type X. The svar
variable is then referenced in the addfive.asm assembly program in Example 3-6 and 5 is added to svar's

second data member.
Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:

cl 6x --syndebug: dwarf cvars.c addfive.asm--run_linker --library=lnk.cnmd --library=rts6200.1ib

--output_fil e=addfive. out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor

the values in svar while stepping through main just as you would any regular C variable.

Example 3-5. Viewing Assembly Variables as C Types C Program

typedef struct
{
int ni;
int ng;
P X
X svar = { 1, 2 };

Example 3-6. Assembly Program for Example 3-5

; Tell the assenbler we're referencing variable "_svar", which is defined in
another file (cvars.c).

; addfive() - Add five to the second data nmenber of _svar

. text
. gl obal addfive
addfive: .asnfunc
LDW . D2T2 *+Bl4(_svar+4),B4 ; load svar.n?2 into B4
RET . S2 B3 ; return fromfunction
NOP 3 ; delay slots 1-3
ADD . D2 5, B4, B4 ; add 5 to B4 (delay slot 4)
STW . D2T2 B4, *+B14(_svar+4) ; store B4 back into svar.nR (delay slot 5)
. endasnf unc
SPRU186V-July 2011 Assembler Description 63

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Cross-Reference Listings www.ti.com

3.14 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the --cross_reference option (see Section 3.3) or use the .option directive with the X
operand (see Select Listing Options). The assembler appends the cross-reference to the end of the
source listing. Example 3-7 shows the four fields contained in the cross-reference listing.

Example 3-7. An Assembler Cross-Reference Listing

LABEL VALUE DEFN REF

. Bl G_ENDI AN 00000000 0

. LI TTLE_ENDI AN 00000001 0

. TMB32006200 00000001 0

. TMS32006700 00000000 0

. TMB32006X 00000001 0

_func 00000000 18

varl 00000000- 4 17

var 2 00000004- 5 18
Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the

symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. Table 3-6 lists these
characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.
Reference (REF) column lists the line numbers of statements that reference the symbol. A

blank in this column indicates that the symbol was never used.

Table 3-6. Symbol Attributes

Character or Name Meaning

REF External reference (global symbol)

UNDF Undefined

Symbol defined in a .text section

Symbol defined in a .data section

+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

64 Assembler Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

. Chapter 4
I3 TEXAS SPRU186V—July 2011

INSTRUMENTS

Assembler Directives

Assembler directives supply data to the program and control the assembly process. Assembler directives
enable you to do the following:

» Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

* Initialize memory

» Assemble conditional blocks

» Define global variables

» Specify libraries from which the assembler can obtain macros
+ Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 4.1 through Section 4.11) describes the
directives according to function, and the second part (Section 4.12) is an alphabetical reference.

Topic Page
4.1 DIrECHIVES SUMIMEAIY ..uueuetinineet et taeeae e ta it e eaeaeaaeeae e aaaasae e antaaas e e anaasaeanananensnns 66
4.2 Directives That Define SECLIONSivieiiiiiiiiieiii e r et e enanaanaaanes 70
4.3 Directives That Initialize CONSTANTSivieieiiiieieee e e e e e e 72
4.4 Directives That Perform Alignment and ReSErve SPaceccceeveveveeiicicienenenrnrnnenes 73
4.5 Directives That Format the OUtpUt LiStiNgS ...cueeieieieieiiiiiiieeiiieeeeeeereeeeneaeaeenes 74
4.6 Directives That Reference Other FileS ... eeens 75
4.7 Directives That Enable Conditional ASSEmMDbBIYoiiiiiiiii e 76
4.8 Directives That Define Union or StruCture TYPES ..iuiuiieiiiuiuiiiieieieieneitinseaeneeasenenens 76
4.9 Directives That Define Enumerated TYPES ...uciieiuiiiiiiiiiiiiiiiiieieaeeisieaeaaensienenans 77
4.10 Directives That Define Symbols at Assembly Timecocoiiiiiiiiiiiiiciieeeeeeene 77
4.11 MiSCEllaN@OUS DIFECIIVES ..ueueieiiuiiitieteat et et et e tasaeae e ase e e e ansaeaeananaennanananannns 78
4.12 DiIreCtivesS REFEIENCE . ..uiiiii it e et e e et e e e e e e nananens 79

SPRU186V-July 2011 Assembler Directives 65

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Summary

13 TEXAS

INSTRUMENTS

www.ti.com

4.1 Directives Summary

Table 4-1 through Table 4-16 summarize the assembler directives.

Besides the assembler directives documented here, the TMS320C6000 software tools support the

following directives:

* The assembler uses several directives for macros. Macro directives are discussed in Chapter 5; they

are not discussed in this chapter.

* The assembly optimizer uses several directives that supply data and control the optimization process.
Assembly optimizer directives are discussed in the TMS320C6000 Optimizing Compiler User's Guide.

* The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Appendix A discusses these directives;
they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes

NOTE:

Any source statement that contains a directive can also contain a label and a comment.

Labels begin in the first column (only labels and comments can appear in the first column),
and comments must be preceded by a semicolon, or an asterisk if the comment is the only

element in the line. To improve readability, labels and comments are not shown as part of

the directive syntax.

Table 4-1. Directives That Define Sections

Mnemonic and Syntax Description See
.bss symbol, size in bytes|, alignment Reserves size bytes in the .bss (uninitialized data) section .bss topic
[, bank offset]]
.clink Enables conditional linking for the current or specified section .clink topic
.data Assembles into the .data (initialized data) section .data topic
.retain Instructs the linker to include the current or specified section in the .retain topic
linked output file, regardless of whether the section is referenced or
not
.sect "section name" Assembles into a named (initialized) section .sect topic
text Assembles into the .text (executable code) section .text topic
symbol .usect "section name", size in bytes Reserves size bytes in a named (uninitialized) section .usect topic
[, alignment[, bank offset]]
Table 4-2. Directives That Initialize Values (Data and Memory)
Mnemonic and Syntax Description See
.byte value], ..., value,] Initializes one or more successive bytes in the current section .byte topic
.char value,], ... , value,] Initializes one or more successive bytes in the current section .char topic
.cstring {expr,|"string,"},... , {expr,|" string,"}] Initializes one or more text strings .string topic
.double value,[, ..., value,] Initializes one or more 64-bit, IEEE double-precision, floating-point .double topic
constants
field value][, size] Initializes a field of size bits (1-32) with value field topic
float value,[, ..., value,] Initializes one or more 32-bit, IEEE single-precision, floating-point float topic
constants
.half value,[, ... , value,] Initializes one or more 16-bit integers (halfword) .half topic
.int value,], ..., value,] Initializes one or more 32-bit integers .int topic
.long value,], ..., value,] Initializes one or more 32-bit integers .long topic
.short value,|, ..., value,] Initializes one or more 16-bit integers (halfword) .short topic
.string {expr,|"string;"}[,... , {expr,|"string,"}] Initializes one or more text strings .string topic
.ubyte value|, ..., value,] Initializes one or more successive unsigned bytes in the current .ubyte topic
section
.uhalf value,], ..., value,] Initializes one or more unsigned 16-bit integers (halfword) .uhalf topic
66 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Summary

Table 4-2. Directives That Initialize Values (Data and Memory) (continued)

Mnemonic and Syntax

Description

See

.uint value[, ..., value,]

.ushort value,[, ..., value,]

Initializes one or more unsigned 32-bit integers
Initializes one or more unsigned 16-bit integers (halfword)

.uint topic
.ushort topic

.uword value,|, ..., value,] Initializes one or more unsigned 32-bit integers .uword topic
.word value,|, ..., value,] Initializes one or more 32-bit integers .word topic
Table 4-3. Directives That Perform Alignment and Reserve Space

Mnemonic and Syntax Description See

.align [size in bytes] Aligns the SPC on a boundary specified by size in bytes, which .align topic
must be a power of 2; defaults to byte boundary

.bes size Reserves size bytes in the current section; a label points to the end .bes topic
of the reserved space

.space size Reserves size bytes in the current section; a label points to the .space topic
beginning of the reserved space

Table 4-4. Directives That Format the Output Listing
Mnemonic and Syntax Description See
.drlist Enables listing of all directive lines (default) .drlist topic

.drnolist
fclist
fcnolist

Suppresses listing of certain directive lines
Allows false conditional code block listing (default)
Suppresses false conditional code block listing

.drnolist topic
fclist topic
fenolist topic

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

length [page length] Sets the page length of the source listing .length topic
list Restarts the source listing list topic
.mlist Allows macro listings and loop blocks (default) .mlist topic
.mnolist Suppresses macro listings and loop blocks .mnolist topic
.nolist Stops the source listing .nolist topic
.option option, [, option, , . . . Selects output listing options; available options are A, B, D, H, L, .option topic
M,N, O, R, T, W, and X
.page Ejects a page in the source listing .page topic
.sslist Allows expanded substitution symbol listing .sslist topic
.ssnolist Suppresses expanded substitution symbol listing (default) .ssnolist topic
.tab size Sets tab to size characters .tab topic
title "string" Prints a title in the listing page heading title topic
.width [page width] Sets the page width of the source listing .width topic
Table 4-5. Directives That Reference Other Files

Mnemonic and Syntax Description See

.copy ["Ifilename["] Includes source statements from another file .copy topic
.include ["]filename["] Includes source statements from another file .include topic
.mlib ["Ifilename["] Specifies a macro library from which to retrieve macro definitions .mlib topic
SPRU186V-July 2011 Assembler Directives 67

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Summary

13 TEXAS
INSTRUMENTS

www.ti.com

Table 4-6. Directives That Effect Symbol Linkage and Visibility

Mnemonic and Syntax

Description

See

.def symbol,], ... , symbol,]

.global symbol,], ..., symbol,]

.ref symbol,[, ..., symbol,]

.symdepend dst symbol name[, src symbol name]

.weak symbol name

Identifies one or more symbols that are defined in the current
module and that can be used in other modules

Identifies one or more global (external) symbols

.def topic

.global topic

Identifies one or more symbols used in the current module that are .ref topic

defined in another module
Creates an artificial reference from a section to a symbol
Identifies a symbol used in the current module that is defined in

another module

.symdepend topic
.weak topic

Table 4-7. Directives That Control Dynamic Symbol Visibility

Mnemonic and Syntax

Description

See

.export "symbolname"
.hidden"symbolname"
.import "symbolname"
.protected "symbolname"

Sets visibility of symbolname to STV_EXPORT
Sets visibility of symbolname to STV_HIDDEN
Sets visibility of symbolname to STV_IMPORT
Sets visibility of symbolname to STV_PROTECTED

.export topic
.hidden topic
.import topic
.protected topic

Table 4-8. Directives That Enable Conditional Assembly

Mnemonic and Syntax

Description

See

.break [well-defined expression]

.else

.elseif well-defined expression

.endif
.endloop
.if well-defined expression

.loop [well-defined expression]

Ends .loop assembly if well-defined expression is true. When using .break topic

the .loop construct, the .break construct is optional.

Assembles code block if the .if well-defined expression is false.
When using the .if construct, the .else construct is optional.

.else topic

Assembles code block if the .if well-defined expression is false and .elseif topic
the .elseif condition is true. When using the .if construct, the .elseif

construct is optional.
Ends .if code block
Ends .loop code block

Assembles code block if the well-defined expression is true

Begins repeatable assembly of a code block; the loop count is
determined by the well-defined expression.

.endif topic
.endloop topic
.if topic

.loop topic

Table 4-9. Directives That Define Union or Structure Types

Mnemonic and Syntax

Description

See

.cstruct

.cunion

.emember
.endenum

.endstruct

.endunion

.enum
.union
.struct
.tag

Acts like .struct, but adds padding and alignment like that which is .cstruct topic

done to C structures

Acts like .union, but adds padding and alignment like that which is .cunion topic

done to C unions

Sets up C-like enumerated types in assembly code
Sets up C-like enumerated types in assembly code

Ends a structure definition

Ends a union definition

Sets up C-like enumerated types in assembly code

Begins a union definition
Begins structure definition

Assigns structure attributes to a label

Section 4.9
Section 4.9

.cstruct topic,
.struct topic

.cunion topic,
.union topic

Section 4.9
.union topic
.struct topic

.cstruct topic,
.struct topic
.union topic

68 Assembler Directives

Copyright © 2011, Texas Instruments Incorporated

SPRU186V-July 2011

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Directives Summary

Table 4-10. Directives That Define Symbols

Mnemonic and Syntax

Description

See

.asg ["]character string["], substitution symbol

Assigns a character string to substitution symbol

.asg topic

.clearmap Cancels all .map assignments. Used by compiler for linear .clearmap topic
assembly source.

symbol .equ value Equates value with symbol .equ topic

.elfsym name, SYM_SIZE(size) Provides ELF symbol information .elfsym topic

.eval well-defined expression , Performs arithmetic on a numeric substitution symbol .eval topic

substitution symbol
.label symbol Defines a load-time relocatable label in a section .label topic
.mapsymbol/register Assigns symbol toregister. Used by compiler for linear assembly .map topic
source.

.newblock Undefines local labels .newblock topic

symbol .set value Equates value with symbol .set topic

.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic

.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic

Table 4-11. Directives That Define Common Data Sections

Mnemonic and Syntax Description See

.endgroup Ends the group declaration .endgroup topic

.gmember section name Designates section name as a member of the group .gmember topic

.group group section name group type : Begins a group declaration .group topic

Table 4-12. Directives That Create or Effect Macros

Mnemonic and Syntax Description See

.endm End macro definition .endm topic

loop[well-defined expression] Segins_repeatable assemb_ly of a code t_JIock; the loop count is loop topic
etermined by the well-defined expression.

macname .macro [parameter,][,... Define macro by macname .macro topic

.mexit Go to .endm Section 5.2

.mlib filename Identify library containing macro definitions .mlib topic

.var Adds a local substitution symbol to a macro's parameter list .var topic

Table 4-13. Directives That Control Diagnhostics

Mnemonic and Syntax Description See

.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file

.mmsg string Sends user-defined messages to the output device .mmsg topic

.noremark[num] Identifies the beginning of a block of code in which the assembler .noremark topic
suppresses the num remark

.remark [num] Resumes the default behavior of generating the remark(s) .remark topic
previously suppressed by .noremark

.wmsg string Sends user-defined warning messages to the output device .wmsg topic

Table 4-14. Directives That Perform Assembly Source Debug

Mnemonic and Syntax Description See

.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic

.endasmfunc Identifies the end of a block of code that contains a function -endasmfunc

topic
SPRU186V-July 2011 Assembler Directives 69

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Directives That Define Sections www.ti.com
Table 4-15. Directives That Are Used by the Absolute Lister
Mnemonic and Syntax Description See
.setsect Produced by absolute lister; sets a section Chapter 8
.setsym Produced by the absolute lister; sets a symbol Chapter 8
Table 4-16. Directives That Perform Miscellaneous Functions
Mnemonic and Syntax Description See
.cdecls [options ,]"filename"[, "filename2"[, ...] Share C headers between C and assembly code .cdecls topic
.end Ends program .end topic
.nocmp Instructs tools to not utilize 16-bit instructions for section .nocmp topic

In addition to the assembly directives that you can use in your code, the compiler produces several

directives when it creates assembly code. These directives are to be used only by the compiler; do not

attempt to use these directives.

+ DWAREF directives listed in Section A.1

* COFF/STABS directives listed in Section A.2

+ The .battr directive is used to encode build attributes for the object file. For more information about
build attributes generated and used by the C6000 Code Generation Tools, please see The C6000
Embedded Application Binary Interface application report (SPRAB89).

+ The .template directive is used for early template instantiation. It encodes information about a template
that has yet to be instantiated. This is a COFF C++ directive.

« The .compiler_opts directive indicates that the assembly code was produced by the compiler, and
which build model options were used for this file.

4.2 Directives That Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

* The .bss directive reserves space in the .bss section for uninitialized variables.

* The .clink directive can be used in the COFF ABI model to indicate that a section is eligible for
removal at link-time via conditional linking. Thus if no other sections included in the link reference the
current or specified section, then the section is not included in the link. The .clink directive can be
applied to initialized or uninitialized sections.

+ The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

+ The .retain directive can be used in the EABI model to indicate that the current or specified section
must be included in the linked output. Thus even if no other sections included in the link reference the
current or specified section, it is still included in the link.

» The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

* The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

» The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 2 discusses these sections in detail.

Example 4-1 shows how you can use sections directives to associate code and data with the proper

sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.

(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC

equals 0. When you resume assembling into a section after other code is assembled, the section's SPC

resumes counting as if there had been no intervening code.

The directives in Example 4-1 perform the following tasks:

70 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives That Define Sections
text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.
.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.
.bss reserves 19 bytes.
Xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the
specified amount of space, and then the assembler resumes assembling code or data into the current
section.

Example 4-1. Sections Directives

00000004 00000002
6 00000008 00000003 . wor d 3,4
0000000c 00000004

7
8 R R R O Rk O R R R R
9 * Start assenbling into the .data section *
10 khkkkkhkkkhkkhkkhkhkkhhkkhhkhhkhkhkhkkhhkdhhkhhhkhhhhdhhkhhhhdhkdkhhhhkhkkx*x
11 00000000 .data
12 00000000 00000009 .word 9, 10
00000004 0000000A
13 00000008 0000000B .word 11, 12
0000000c 0000000C
14
15 R R I Rk R S R R R R O
16 * Start assenbling into a naned, *
17 * initialized section, var_defs *
18 khkkhkkhhkkhhkhkhhkhhhhhhhdhdhdhhdhdhddrddhdhdhrdrdrhddhxdxxx*x
19 00000000 . sect "var _defs"
20 00000000 00000011 .word 17, 18
00000004 00000012
21
22 khkkkkhkkkhkkhkkhkhkkhkhkkhhkhhkhkhkhkkhhkkhhkhhkhkhhkhhdhhkhhhhdhkdkhhhhkhkkx*x
23 * Resune assenbling into the .data section *
24 khkhkhkhkhkhkhkhhhhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk*kkkkk*k*k*x*%
25 00000010 .data
26 00000010 0000000D .word 13, 14
00000014 0000000E
27 00000000 . bss sym 19 ; Reserve space in .bss
28 00000018 0000000F .word 15, 16 ; Still in .data
0000001c 00000010
29
30 R R I O R Rk R S O R I R
31 * Resurme assenbling into the .text section *
32 khkkkkhkkkhkkhkkhkhkkhkhkkhhkhhkhkhhkkhhkkhhkhhkhkhhhhdhkhhhhhdhrkdkhhhhxhhkx*x
33 00000010 . text
34 00000010 00000005 .word 5, 6
00000014 00000006
35 00000000 usym .usect "xy", 20 ; Reserve space in xy
36 00000018 00000007 .word 7, 8 ;o Still in .text

0000001c 00000008

SPRU186V-July 2011 Assembler Directives 71

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Directives That Initialize Constants www.ti.com

4.3 Directives That Initialize Constants

Several directives assemble values for the current section:

3

The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current
section. These directives are similar to .long and .word, except that the width of each value is restricted
to eight bits.

The .double directive calculates the double-precision (64-bit) IEEE floating-point representation of one
or more floating-point values and stores them in two consecutive words in the current section. The
.double directive automatically aligns to the double-word boundary.

The .field directive places a single value into a specified number of bits in the current word. With _field,
you can pack multiple fields into a single word; the assembler does not increment the SPC until a word
is filled.

Figure 4-1 shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change (the fields are packed into the same word):

1 00000000 00000003 .field 3,4
2 00000000 00000083 .field 8,5
3 00000000 00002083 .field 16,7

Figure 4-1. The .field Directive

e 3 2 1 0
| 0 0 1 1]|].field 3, 4
Ne—— —
4 bits
. 8 7 6 5 4 !
| 0 1 0 0 0/0 0 1 1].fielas, s
31 15 14 13 12 11 10 9

| 0 01 000 0[0 100 0[0 0 1 1]siedus, 7

The .float directive calculates the single-precision (32-bit) IEEE floating-point representation of a single
floating-point value and stores it in a word in the current section that is aligned to a word boundary.

The .half, .uhalf, .short, and .ushort directives place one or more 16-bit values into consecutive 16-bit
fields (halfwords) in the current section. The .half and .short directives automatically align to a short
(2-byte) boundary.

The .int, .uint, .long, .word, .uword directives place one or more 32-bit values into consecutive 32-bit
fields (words) in the current section. The .int, .long, and .word directives automatically align to a word
boundary.

The .string and .cstring directives place 8-bit characters from one or more character strings into the
current section. The .string and .cstring directives are similar to .byte, placing an 8-bit character in each
consecutive byte of the current section. The .cstring directive adds a NUL character needed by C; the
.string directive does not add a NUL character.

Directives That Initialize Constants When Used in a .struct/.endstruct Sequence

NOTE: The .byte, .char, .int, .long, .word, .double, .half, .short, .string, .float, and .field directives do
not initialize memory when they are part of a .struct/ .endstruct sequence; rather, they define
a member’s size. For more information, see the .struct/.endstruct directives.

Figure 4-2 compares the .byte, .half, .word, and .string directives. Using the following assembled code:

1 00000000 000000AB .byte OABh

2 .align 4

3 00000004 00OOCDEF . hal f 0CDEFh

4 00000008 89ABCDEF .word 089ABCDEFh
5 0000000c 00000068 .string "hel p"

0000000d 00000065
0000000e 0000006C
0000000f 00000070

72 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives That Perform Alignment and Reserve Space
Figure 4-2. Initialization Directives
Word Contents Code
31 0
1 0 0 0 0 0 0 A B | -byte 0aBh
\— —
1 byte
2 0 0 0 0 C D E E .half OCDEFh
2 bytes (half word)
.word 089ABCDEFh
3 8 9 A B C D E F
whole word
4 70 6C 65 68 -string "help”
p | e h

4.4 Directives That Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

* The .align directive aligns the SPC at the next byte boundary. This directive is useful with the .field
directive when you do not want to pack two adjacent fields in the same byte.

Figure 4-3 demonstrates the .align directive. Using the following assembled code:

1
2 00000000 00AABBCC field OAABBCCh, 24
3 .align 2
4 00000000 0BAABBCC field 0Bh,5
5 00000004 000000DE field ODEh, 10
Figure 4-3. The .align Directive
Word Code
31 23 0
o | 101010101011101111001 100 -field 0anBBCCh, 24
24-bit field
31 23 0
© [00000000101010101011101111001100| -3tion?2
31 4 0
1 I 0101 1| .field 0Bh, 5
\—\/_/
5-bit field
31 15 4 0
1 0011011110/0101 1| -field 0DER, 10
10-bit field
SPRU186V-July 2011 Assembler Directives 73

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Directives That Format the Output Listings www.ti.com

The .bes and .space directives reserve a specified humber of bytes in the current section. The
assembler fills these reserved bytes with 0Os.

— When you use a label with .space, it points to the first byte that contains reserved bits.
— When you use a label with .bes, it points to the last byte that contains reserved bits.
Figure 4-4 shows how the .space and .bes directives work for the following assembled code:

1

2 00000000 00000100 .word 100h, 200h
00000004 00000200

3 00000008 Res_1: . space 17

4 0000001c 0OO000OF .word 15

5 00000033 Res_2: . bes 20

6 00000034 000000BA . byte 0BAh

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the
space reserved by .bes.

Figure 4-4. The .space and .bes Directives

- ~
<4— Res_1=08h
17 bytes
reserved
20 bytes
reserved
<4— Res_2=33h
RN

4.5 Directives That Format the Output Listings

These directives format the listing file:

« The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval Jength .mnolist var
.break fclist .mlist .sslist .width
.emsg .fcnolist .mmsg .ssnolist .wmsg

» The source code listing includes false conditional blocks that do not generate code. The .fclist and
fcnolist directives turn this listing on and off. You can use the .fclist directive to list false conditional
blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

+ The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

» The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

* The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

» The .option directive controls certain features in the listing file. This directive has the following
operands:

74 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives That Reference Other Files

4.6 Dir

turns on listing of all directives and data, and subsequent expansions, macros, and blocks.
limits the listing of .byte and .char directives to one line.

turns off the listing of certain directives (same effect as .drnolist).

limits the listing of .half and .short directives to one line.

limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, H, L, M, T, and W directives (turns off the limits of B, H, L, M, T, and W).
limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a cross-reference listing
by invoking the assembler with the --cross_reference option (see Section 3.3).

XsH4DWVOZZTrITOowD>»

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

The .tab directive defines tab size.
The .title directive supplies a title that the assembler prints at the top of each page.

The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

ectives That Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

.

The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Section 2.7.1). The .global directive does double duty,
acting as a .def for defined symbols and as a .ref for undefined symbols. The linker resolves an
undefined global symbol reference only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the linker can resolve its definition. The .ref directive forces the linker to resolve a
symbol reference.

The .symdepend directive creates an artificial reference from the section defining the source symbol
name to the destination symbol. The .symdepend directive prevents the linker from removing the
section containing the destination symbol if the source symbol section is included in the output module.

The .weak directive identifies a symbol that is used in the current module but is defined in another
module. It is equivalent to the .ref directive, except that the reference has weak linkage.

SPRU186V-July 2011 Assembler Directives 75
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Directives That Enable Conditional Assembly www.ti.com

4.7

4.8

Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble
conditional blocks of code:

* The .ifl.elseifl.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.

.if well-defined expression marks the beginning of a conditional block and assembles code
if the .if well-defined expression is true.

[.elseif well-defined expression] marks a block of code to be assembled if the .if well-defined
expression is false and the .elseif condition is true.

.else marks a block of code to be assembled if the .if well-defined
expression is false and any .elseif conditions are false.

.endif marks the end of a conditional block and terminates the block.

» The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.

.loop [well-defined expression] marks the beginning of a repeatable block of code. The optional
expression evaluates to the loop count.

.break [well-defined expression] tells the assembler to assemble repeatedly when the .break
well-defined expression is false and to go to the code
immediately after .endloop when the expression is true or
omitted.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see Section 3.10.4.

Directives That Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union
types of the C language.

The .struct, .union, .cstruct, and .cunion directives group related data into an aggregate structure which is
more easily accessed. These directives do not allocate space for any object. Objects must be separately
allocated, and the .tag directive must be used to assign the type to the object.

COCRDT . struct ; structure tag definition

X .byte ;

Y . byte

T_LEN .endstruct

COORD .tag COORDT ; decl are COORD (coordi nate)
. bss COORD, T_LEN ; actual nenory allocation

LDB *+B14(COORD.Y), A2 ; nove nenber Y of structure
; COORD into register A2

The .cstruct and .cunion directives guarantee that the data structure will have the same alignment and
padding as if the structure were defined in analogous C code. This allows structures to be shared between
C and assembly code. See Chapter 12. For .struct and .union, element offset calculation is left up to the
assembler, so the layout may be different than .cstruct and .cunion.

76

Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Directives That Define Enumerated Types

4.9 Directives That Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names
to refer to compile-time constants. The types created are analogous to the enum type of the C language.
This allows enumerated types to be shared between C and assembly code. See Chapter 12.

See Section 12.2.10 for an example of using .enum.

4.10 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

* The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols can be redefined.

.asg "10, 20, 30, 40", coefficients
; Assign string to substitution synbol.
.byte coefficients
; Place the synbol values 10, 20, 30, and 40
; into consecutive bytes in current section.

* The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating

counters:
.asg 1, x ;o x =1
.1 oop ; Begin conditional I|oop.
.byte x*10h ; Store value into current section.
. break x =4 ; Break loop if x = 4.
. eval x+1, x ; Increnent x by 1.
. endl oop ; End conditional | oop.

* The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .define cannot be redefined.

+ The .label directive defines a special symbol that refers to the load-time address within the current
section. This is useful when a section loads at one address but runs at a different address. For
example, you may want to load a block of performance-critical code into slower off-chip memory to
save space and move the code to high-speed on-chip memory to run. See the .label topic for an
example using a load-time address label.

+ The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table
and cannot be redefined; for example:

bval .set 0100h ;. Set bval = 0100h
.long bval, bval *2, bval +12
; Store the val ues 0100h, 0200h, and 010Ch
; into consecutive words in current section

The .set and .equ directives produce no object code. The two directives are identical and can be used
interchangeably.

* The .unasg directive turns off substitution symbol assignment made with .asg.
* The .undefine directive turns off substitution symbol assignment made with .define.
» The .var directive allows you to use substitution symbols as local variables within a macro.

SPRU186V-July 2011 Assembler Directives 77

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Miscellaneous Directives www.ti.com

411 Miscellaneous Directives

These directives enable miscellaneous functions or features:

 The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

* The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

» The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

* The .group, .gmember, and .endgroup directives define a common data section for member of an
ELF group section.

+ The .import, .export, .hidden, and .protected directives set the dynamic visibility of a global symbol
for ELF only. See Section 7.12 for an explanation of symbol visibility

» The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a
decimal digit, or of the form NAME?, where you specify NAME. They are defined when they appear in
the label field. Local labels are temporary labels that can be used as operands for jump instructions.
The .newblock directive limits the scope of local labels by resetting them after they are used. See
Section 3.9.2 for information on local labels.

* The .nocmp directive for C6400+, C6740, and C6600 instructs the tools to not utilize 16-bit instructions
for the section .nocmp appears in.

* The .noremark directive begins a block of code in which the assembler suppresses the specified
assembler remark. A remark is an informational assembler message that is less severe than a
warning. The .remark directive re-enables the remark(s) previously suppressed by .noremark.

These three directives enable you to define your own error and warning messages:

* The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

+ The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

+ The .wmsg directive sends warning messages to the standard output device. The .wmsg directive
functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 5.7.

78

Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

412 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one

topic.

.align Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 1 aligns the SPC on the next
byte boundary, and this is the default if no size in bytes is given. The assembler
assembles words containing null values (0) up to the next size in bytes boundary:

1 aligns SPC to byte boundary
2 aligns SPC to halfword boundary
4 aligns SPC to word boundary
8 aligns SPC to doubleword boundary
128 aligns SPC to page boundary
Using the .align directive has two effects:
* The assembler aligns the SPC on an x-byte boundary within the current section.
» The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 8, and a default

.align.
1 00000000 00000004 .byte 4
2 .align 2
3 00000002 00000045 .string "Errorcnt”
00000003 00000072
00000004 00000072
00000005 0000006F
00000006 00000072
00000007 00000063
00000008 0000006E
00000009 00000074
4 .align
5 00000008 0003746E field 3,3
6 00000008 002B746E field 5,4
7 .align 2
8 0000000c 00000003 field 3,3
9 .align 8
10 00000010 00000005 field 5, 4
11 .align
12 00000011 00000004 .byte 4
SPRU186V-July 2011 Assembler Directives 79

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.asg/.define/.eval

Syntax

Description

Assign a Substitution Symbol

.asg "character string" ,substitution symbol
.define "character string" ,substitution symbol

.eval well-defined expression,substitution symbol

The .asg and .define directives assign character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns a
constant value (which cannot be redefined) to a symbol, .asg assigns a character string
(which can be redefined) to a substitution symbol.

» The assembler assigns the character string to the substitution symbol.

* The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .define directive functions in the same manner as the .asg directive, except that
.define disallows creation of a substitution symbol that has the same name as a register
symbol or mnemonic. It does not create a new symbol hame space in the assembiler,
rather it uses the existing substitution symbol name space. The .define directive is used
to prevent corruption of the assembly environment when converting C/C++ headers. See
Chapter 12 for more information about using C/C++ headers in assembly source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the well-defined expression and
assigns the string value of the result to the substitution symbol. The .eval directive is
especially useful as a counter in .loop/.endloop blocks.

* The well-defined expression is an alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute.

» The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

80

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Example This example shows how .asg and .eval can be used.

1 .sslist ; show expanded substitution synbols
2
3 . asg *+B14(100), GLOB100
4 . asg *+B15(4), ARGD
5
6 00000000 003B22E4 LDW GLOB100, A0

LDW *+B14(100), A0
7 00000004 00BC22E4 LDW ARQD, Al

LDW *+B15(4), Al
8 00000008 00006000 NOP 4
9 0000000c 010401E0 ADD A0, Al, A2
10
11 .asg 0, x
12 .l oop 5
13 .wor d 100* x
14 .eval X+1, X
15 . endl oop

1 00000010 00000000 .wor d 100*x

.word 100*0

1 . eval x+1, X

. eval 0+1, x

1 00000014 00000064 .word 100*x

.wor d 100*1

1 . eval X+1, X

.eval 1+1, X

1 00000018 000000C8 .wor d 100*x

.wor d 100*2

1 .eval X+1, X

. eval 2+1, x

1 0000001c 0000012C .wor d 100*x

.word 100*3

1 . eval x+1, X

. eval 3+1, X

1 00000020 00000190 .word 100*x

.wor d 100*4

1 . eval X+1, X

. eval 441, x

SPRU186V-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Assembler Directives

81

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.asmfunc/.endasmfunc Mark Function Boundaries

Syntax symbol .asmfunc [stack_usage(num)]
.endasmfunc
Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code
sections to be debugged in the same manner as C/C++ functions.
You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.
The .asmfunc and .endasmfunc directives cannot be used when invoking the compiler
with the backwards-compatibility --symdebug:coff option. This option instructs the
compiler to use the obsolete COFF symbolic debugging format, which does not support
these directives.
The symbol is a label that must appear in the label field.
The .asmfunc directive has an optional parameter, stack _usage, which sets the stack to
num bytes.
Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:
$ filename : beginning source line : ending source line $
Example In this example the assembly source generates debug information for the user_func
section.
1 00000000 .sect ".text"
2 . gl obal userfunc
3 .global _printf
4
5 userfunc: .asnfunc stack_usage(16)
6 00000000 00000010! CALL .81 _printf
7 00000004 01BC94F6 STW .D2T2 B3, *B15--(16)
8 00000008 01800E2A MVKL .82 RLO, B3
9 0000000c 01800028+ MVKL .81 SL1+0, A3
10 00000010 01800068+ MVKH .s1 SL1+0, A3
11
12 00000014 01BC22F5 STW .D2T1 A3, *+B15(4)
13 00000018 0180006A' | | MVKH .82 RLO, B3
14
15 0000001c 01BC92E6 RLO: LDW .D2T2 *++B15(16), B3
16 00000020 020008C0 ZERO .D1 Ad
17 00000024 00004000 NOP 3
18 00000028 00000362 RET .82 B3
19 0000002c 00008000 NOP 5
20 . endasnf unc
21
22 00000000 . sect ".const"
23 00000000 00000048 SL1: .string "Hello Wrld!", 10,0
00000001 00000065
00000002 0000006C
00000003 0000006C
00000004 0000006F
00000005 00000020
00000006 00000057
00000007 0000006F
00000008 00000072
00000009 0000006C
0000000a 00000064
0000000b 00000021
0000000c 0000000A
82 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
0000000d 00000000
SPRU186V-July 2011 Assembler Directives 83

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.bss Reserve Space in the .bss Section
Syntax .bss symbol,size in bytes|, alignment[, bank offset]]
Description The .bss directive reserves space for variables in the .bss section. This directive is

usually used to allocate space in RAM.

* The symbol is a required parameter. It defines a label that points to the first location
reserved by the directive. The symbol name must correspond to the variable that you
are reserving space for.

+ The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the .bss section. There is no default size.

* The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. This boundary indicates the size of the slot
in bytes and must be set to a power of 2. If the SPC is aligned to the specified
boundary, it is not incremented.

* The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

For more information about sections, see Chapter 2.

Example In this example, the .bss directive allocates space for a variable, array. The symbol array
points to 100 bytes of uninitialized space (at .bss SPC = 0). Symbols declared with the
.bss directive can be referenced in the same manner as other symbols and can also be
declared global.

l kkhkkhkkkhkkkhkkhkkkkkkkkkkkkkkk*k*x
2 ** Start assenbling into .text section. **
3 khkkhkkhkkhkkhkkhkkhkhkhkkhkkkkkkkk*x*
4 00000000 . text
5 00000000 008001A0 W A0, Al
6
7 kkhkkhkkkhkkkhkkkkkkkkkkkkkkk*x*x
8 ** Allocate 100 bytes in .bss. *x
9 khkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*x*%
10 00000000 . bss array, 100
11
12 khkkhkkhkkhkkhkkhkhkhkhkkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk*x*%
13 ** Still in . text *
14 khkkkkhkkkhkhkkhkkhkhkkhhkkhkhkkhhkhkhhkkhhkdhhhhkhhkhhdhkhkhhkhhkkhxkxx*x
15 00000004 010401A0 v Al, A2
16
17 khkkkkhkkkhkhkhkkhkhkkhhkkhhkhhhkhhkkhhkdhkhkhhkhhkhhdhkhkhkhkhhxkhxkxx*x
18 ** Declare external .bss synbol * %
19 kkhkkhkkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkkkk*x*
20 .global array

84 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.byte/.char

Syntax

Description

Example

Initialize Byte

.byte value,], ..., value, |

.char value,], ... , value,]

The .byte and .char directives place one or more values into consecutive bytes of the
current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The second
byte occupies bits eight through 15 while the third byte occupies bits 16 through 23. The
assembler truncates values greater than eight bits.

If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag
topic.

In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte. Also, 8-bit values (8, -3, def, and b) are placed into consecutive
bytes in memory with .char. The label STRX has the value Oh, which is the location of
the first initialized byte. The label STRY has the value 6h, which is the first byte
initialized by the .char directive.

1 00000000 0000000A STRX . byte 10, -1, "abc", " a
00000001 000O00FF
00000002 00000061
00000003 00000062
00000004 00000063
00000005 00000061
2 00000006 00000008 STRY . char 8,-3,"def"," b

SPRU186V-July 2011

Assembler Directives 85

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.cdecls

Syntax

Syntax

Description

Share C Headers Between C and Assembly Code

Single Line:
.cdecls [options ,] " filename "[, " filename2 "[,...]]
Multiple Lines:
.cdecls [options]
%{
I* *
/* C/C++ code - Typically a list of #includes and a few defines */
[* %/
%0}

The .cdecls directive allows programmers in mixed assembly and C/C++ environments
to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the
opposite of the C option.

NOLIST Do not include the converted assembly code in any listing file generated
for the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the
containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot
be converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %f{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations;
non-function-like macros; enumerations; and #define's.

86

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I

TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

The resulting assembly language is included in the assembily file at the point of the
.cdecls directive. If the LIST option is used, the converted assembly statements are
printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 12 for more information on setting up and using the .cdecls directive with C
header files.

Example In this example, the .cdecls directive is used call the C header.h file.
C header file:
#define WANT_I D 10
#defi ne NAME "John\n"
extern int a_variable;
extern float cvt_integer(int src);
struct myCstruct { int menber_a; float menber_b; };
enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };
Source file:
.cdecl s C LI ST, "nyheader. h"
si ze: .int $sizeof (nyCstruct)
aof fset: .int nmyCstruct.nmenber_a
boffset: .int myCstruct.nenber_b
okval ue: .int status_enum K
failval: .int status_enum FAl LED
.if $$defi ned(WANT_I D)
id .cstring NAME
.endi f
Listing File:
1 .cdecl s C, LI ST, "nyheader. h"
A 1 e
A 2 ; Assenbly Cenerated from ¢ C++ Source Code
A 3 R L LT T
A 4
A 5 =========== MACRO DEFI Nl TI ONS ===========
A 6 .define "10", WANT_I D
A 7 .define """John\n""", NAME
A 8
A 9 ; =========== TYPE DEFI NI TI ONS ===========
A 10 stat us_enum .enum
A 11 00000001 K .enenber 1
A 12 00000100 FAI LED . enenber 256
A 13 00000000 RUNNI NG .enenber 0
A 14 .endenum
A 15
A 16 myCstruct .struct 0,4
17 struct size=(8 bytes|64 bits), alignnent=4
A 18 00000000 nenber_a .field 32
19 ; int nenber_a - offset O bytes, size (4 bytes|32 bits)
A 20 00000004 nenber _b .field 32
21 ; float menber_b - offset 4 bytes, size (4 bytes|32 bits)

SPRU186V-July 2011
Submit Documentation Feedback

Assembler Directives 87

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

A 22 00000008 . endstruct
23 ; final size=(8 bytes|64 bits)
A 24
A 25 ; =========== EXTERNAL FUNCTI ONS ===========
A 26 .global _cvt_integer
A 27
A 28 ; =========== EXTERNAL VARI ABLES ===========
A 29 .global _a variable
2 00000000 00000008 si ze: .int $sizeof (nyCstruct)
3 00000004 00000000 aoffset: .int myCstruct.nmenber_a
4 00000008 00000004 boffset: .int nyCstruct. nmenber_b
5 0000000c 00000001 okval ue: .int status_enum OK
6 00000010 00000100 failval: .int status_enum FAlILED
7 .if $defined(WANT_I D)
8 00000014 0000004A id .cstring NAME
00000015 0000006F
00000016 00000068
00000017 0000006E
00000018 0000000A
00000019 00000000
9 .endif
88 Assembler Directives SPRU186V-July 2011

Copyright © 2011, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.clink/.retain

Syntax

Description

Control Whether to Conditionally Leave Section Out of Object Module Output

.clink["section name"]

.retain["section name"]

The .clink directive enables conditional linking by telling the linker to leave a section out
of the final object module output of the linker if there are no references found to any
symbol in that section. The .clink directive can be applied to initialized or uninitialized
sections.

The section name identifies the section. If the directive is used without a section name, it
applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section
name:subsection name.

The .clink directive is useful only with the COFF object file format. Under the COFF ABI
model, the linker assumes that all sections are ineligible for removal via conditional
linking by default. If you want to make a section eligible for removal, you must apply a
.clink directive to it. In contrast, under the ELF EABI model, the linker assumes that all
sections are eligible for removal via conditional linking. Therefore, the .clink directive has
no effect under EABI.

A section in which the entry point of a C program is defined cannot be marked as a
conditionally linked section.

The .retain directive indicates that the current or specified section is not eligible for
removal via conditional linking. You can also override conditional linking for a given
section with the --retain linker option. You can disable conditional linking entirely with the
--unused_section_elimination=off linker option.

Since under the ELF EABI model the linker assumes that all sections are eligible for
removal via conditional linking by default, the .retain directive becomes useful for
overriding the default conditional linking behavior for those sections that you want to
keep included in the link, even if the section is not referenced by any other section in the
link. For example, you could apply a .retain directive to an interrupt function that you
have written in assembly language, but which is not referenced from any normal entry
point in the application.

Under the COFF ABI model, the linker assumes that all sections are not eligible for
removal via conditional linking by default. So under the COFF ABI mode, the .retain
directive does not have any real effect on the section.

SPRU186V-July 2011

Assembler Directives 89

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS

INSTRUMENTS

www.ti.com

Example 1 Here's an example of an interrupt function that has a .retain directive applied to it.
. sect ".text:interrupts:retain"
.retain
.global _int_funcl
;**
;¥ FUNCTI ON NAME: int_funcl *
chkkkkhkhkhkhkhkhkhkhkhkhkhhhkhhhhkhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhkhkhhhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkkkkkx*x*
_int_funcl:
STW . D2 FP, * SP++(- 88) ; [B.D |31]
STW . D2 B3, * SP(80) ; [B_D |31]
STW .D2 A4, * SP(24) : [B_D |31]
STW .D2 B2, * SP(84) ; [B_D |31]
STW . D2 B9, * SP(76) ; [B_D |31]
STW .D2 B8, * SP(72) : [B_D |31]
STW .D2 B7, * SP(68) ; [B_D |31]
STW .D2 B6, * SP(64) ; [B_D |31]
STW .D2 B5, * SP(60) : [B_D |31]
STW .D2 B4, * SP(56) ; [B_D |31]
STW . D2 B1, * SP(52) ; [B_D |31]
STW .D2 BO, * SP(48) : [B_D |31]
STW .D2 A7, * SP(36) ; [B_D |31]
STW . D2 A6, * SP(32) ; [B_D |31]
STW .D2 A5, * SP(28) : [B_D |31]
CALL .81 _foo ; [A_S] |32]
[STW .D2 A8, * SP(40) [B_D| |31]
STW .D2 B4, *+DP(_a_i) ; [B_D |33
RET .82 | RP [B_Sb] | 34|
|l LDW .D2 *SP(56), B4 ; [B_D | 34]
LDW .D2 *++SP(88) , FP [B_D |34]
NOP 4 v [ALL]
Example 2 In this example, the Vars and Counts sections are set for conditional linking.
1 00000000 .sect "Vars"
2 .clink
3 Vars section is conditionally |inked
4
5 00000000 0000001A X: .word 01Ah
6 00000004 0000001A Y: .word 01Ah
7 00000008 0000001A Z: .word 01Ah
8 00000000 .sect "Counts"
9 .clink
10 ; Counts section is conditionally Iinked
11
12 00000000 0000001A XCount: .word 01Ah
13 00000004 0000001A YCount: .word 01Ah
14 00000008 0000001A ZCount: .word 01Ah
15 00000000 . text
16 ; By default, .text is unconditionally Iinked
17
18 00000000 00B802C4 LDH *Bl4, Al
19 00000004 00000028+ MVKL X, A0
20 00000008 00000068+ MVKH X, AO
21 These references to synbol X cause the Vars
22 ; section to be linked into the object output
23 0000000c 00040AF8 CMPLT A0, A1, A0
90 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy "filename"

.include "filename"

The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:

1. Stops assembling statements in the current source file

2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
guotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/filel.asm). If you do not specify
a full pathname, the assembler searches for the file in;

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option
3. Any directories specified by the C6X_A_DIR environment variable
4. Any directories specified by the C6X_C_DIR environment variable

For more information about the --include_path option and C6X_A DIR, see Section 3.5.
For more information about C6X_C_DIR, see the TMS320C6000 Optimizing Compiler
User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

word.asm
(second copy file)

copy.asm
(source file)

byte.asm
(first copy file)

** |'n word.asm
.word OABCDh, 56q

. Space 29

.copy "byte. asnt
** Back in original

.string "done"

** |n byte.asm
.byte 32,1+ 'A
.copy "word.asnt

** Back in byte.asm
.byte 67h + 3q

file

SPRU186V-July 2011

Assembler Directives 91

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Listing file:
1 00000000 . Space 29
2 .copy "byte.asnt
A 1 ** |n byte.asm
A 2 0000001d 00000020 .byte 32,1+ 'A
0000001e 00000042
A 3 .copy "word.asnt
B 1 ** |n word. asm
B 2 00000020 0O00OABCD .word OABCDh, 56q
00000024 0000002E
A 4 ** Back in byte.asm
A 5 00000028 0000006A .byte 67h + 3q
3
4 ** Back in original file
5 00000029 00000064 .string "done"
0000002a 0000006F
0000002b 0000006E
0000002c 00000065
Example 2 In this example, the .include directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the
listing file.
include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
. space 29 ** |n byte2.asm ** |n word2.asm
.include "byte2. asnt .byte 32,1+ ' A .word OABCDh, 56q
** Back in original file .include "word2. asnt
.string "done" ** Back in byte2.asm
.byte 67h + 3q
Listing file:
1 00000000 . Space 29
2 .include "byte2. asnt
3
4 ** Back in original file
5 00000029 00000064 .string "done"
0000002a 0000006F
0000002b 0000006E
0000002¢c 00000065
92 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.cstruct/.cunion/.endstruct/.endunion/.tag Declare C Structure Type

Syntax

Description

Example

[stag] .cstruct|.cunion [expr]
[mem,] element [expr,]
[mem,] element [expr,]
[mem,] .tag stag [expr.]
[mem,] element [expry]
[size] .endstruct|.endunion
label .tag stag

The .cstruct and .cunion directives have been added to support ease of sharing of
common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

» The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

* The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. A .tag directive
is a special case because stag must be used (as in the definition of stag).

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is O.

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

+ The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

* The size is an optional label for the total size of the structure.

This example illustrates a structure in C that will be accessed in assembly code.

SPRU186V-July 2011

Assembler Directives 93

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
typedef struct STRUCT1
] int i0; /* offset 0 */
; short sO; /* offset 4 */
i} structl; /* size 8, alignnment 4 */
; typedef struct STRUCT2
A structl stl; /* offset 0 */
; short s1i; /* offset 8 */
; } struct?2; /* size 12, alignment 4 */
; The structure will get the follow ng offsets once the C conpiler |lays out the structure
; elements according to the C standard rul es
; offsetof(structl, i0) =0
; offsetof(structl, s0) = 4
; sizeof (structl) =8
; offsetof(struct2, sl) =0
; offsetof(struct2, il) =8
; Sizeof (struct?2) =12
; Attenpts to replicate this structure in assenbly using the .struct/.union directives will not

create the correct offsets because the assenbler tries to use the npst conpact arrangenent:

structl .struct
i0 .int ; bytes 0-3
sO .short ; bytes 4-5
structll en .endstruct ; size 6, alignnent 4
struct2 .struct
stl .tag structl ; bytes 0-5
sl .short ; bytes 6-7
endstruct2 .endstruct ; size 8, alignnment 4
.sect "datal"
.word structl.iO ;0
.word structl.s0 ;4
.word structllen ;6
.sect "data2"
.word struct2.stl ;0
.word struct2.sl ;6
.word endstruct2 ;8
; The .cstruct/.cunion directives calculate the offsets in the sane manner as the C conpiler
; The resulting assenbly structure can be used to access the elenents of the C structure
; Conpare the difference in the offsets of those structures defined via .struct above and the
; offsets for the C code
cstructl .cstruct
i0 Lint ; bytes 0-3
s0 .short ; bytes 4-5
cstructll en . endstruct ; size 8, alignnent 4
cstruct2 .cstruct
stl .tag cstructl ; bytes 0-7
sl .short ; bytes 8-9
cendstruct2 .endstruct ; size 12, alignnent 4
.sect "data3"
.word cstructl.i0, structl.iO ;0
.word cstructl.s0, structl.sO ;4
.word cstructllen, structllen ;8
.sect "data4"
.word cstruct2.stl, struct2.stl ; O
94 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
.word cstruct2.sl1, struct2.sl ;8
.word cendstruct?2, endstruct2 ;12
SPRU186V-July 2011 Assembler Directives 95

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.data Assemble Into the .data Section
Syntax .data
Description The .data directive tells the assembler to begin assembling source code into the .data

section; .data becomes the current section. The .data section is normally used to contain
tables of data or preinitialized variables.

For more information about sections, see Chapter 2.

Example In this example, code is assembled into the .data and .text sections.
1 EE R R S I S I I R R R R I I I R R I S I
2 *x Reserve space in .data *x
3 khkhkhkhkkhkhhhkhkhkhkddhhhhhhhkhkhkhkhddhkhhkhhhkhhkhkhrhrhhhhhkdhhhhxx
4 00000000 .data
5 00000000 .space 0CCh
6
7 EE R R S R I I R R R R I R R R I I
8 *x Assenbl e into .text *x
9 khkhkhkhkhkhhhkhkhkhkddhhkhhhhhhkhkhkdddhdhhkhdhdhkhkhkhkhrhrhkhhhdhkdhhhhix
10 00000000 . text
11 00000000 00800358 ABS A0, Al
12
13 EE R R S R I I R R R R S I R R I I
14 *x Assenble into .data *x
15 khkkhkhkhkkhkhhhkhkhkhkdhhdhhdhhhkhkhkdddhhhkhhhkhhkhkhrhrhhhhdhdhhhhxx
16 000000cc table: .data
17 000000cc FFFFFFFF .word -1
18 000000d0 O0000QOFF .byte OFFh
19
20 IR EE R EEEEEEEEEEEEEEEREEEESEEEEEERESEEEEEEEEESESEEESES
21 ** Assenbl e into .text **
22 ER R R S I I I I R R R R S S R R R I I
23 00000004 .text
24 00000004 008001A0 \Y4 AOQ, Al
25
26 IR R SR EEEEEEEEEEEEEEEREEEEEEEEEERESEEEEEEEEESESEEESES
27 ** Resune assenbling into the .data section **
28 ER R R S R R I I R R R R I I I I R R R I I
29 000000d1 .data

30 000000d4 00000000 coeff .word 00h, Oah, Obh
000000d8 0000000A
000000dc 0000000B

96 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Initialize Double-Precision Floating-Point Value

.double value, [, ..., value,]

The .double directive places the IEEE double-precision floating-point representation of
one or more floating-point values into the current section. Each value must be a
floating-point constant or a symbol that has been equated to a floating-point constant.
Each constant is converted to a floating-point value in IEEE double-precision 64-bit
format. Double-precision floating point constants are aligned to a double word boundary.

The 64-bit value is stored in the format shown in Figure 4-5.

Figure 4-5. Double-Precision Floating-Point Format

[SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMM M|

20 0

|MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl

0

Legend: S =sign

.double
Syntax
Description
31
31
Example

E = exponent (11-bit biased)
M = mantissa (52-bit fraction)

When you use .double in a .struct/.endstruct sequence, .double defines a member's size;
it does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

This example shows the .double directive.

1 00000000 2C280291 . doubl e -2.0e25
00000004 C5308B2A

2 00000008 00000000 .double 6
0000000c 40180000

3 00000010 00000000 . doubl e 456

00000014 407C8000

SPRU186V-July 2011

Assembler Directives 97

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.drlist/.drnolist

Control Listing of Directives

Syntax drlist
.drnolist
Description Two directives enable you to control the printing of assembler directives to the listing file:
The .drlist directive enables the printing of all directives to the listing file.
The .drnolist directive suppresses the printing of the following directives to the listing
file. The .drnolist directive has no affect within macros.
+ .asg + .fenolist .ssnolist
+ .break o .mlist .var
+ .emsg * .mmsg .wmsg
+ .eval * .mnolist
+ fclist o .sslist
By default, the assembler acts as if the .drlist directive had been specified.
Example This example shows how .drnolist inhibits the listing of the specified directives.
Source file:
.length 65
.width 85
. asg 0, x
.1 oop 2
. eval x+1, X
. endl oop
.drnolist
.length 55
.width 95
. asg 1, X
.1 oop 3
.eval x+1, X
. endl oop
Listing file:
3 . asg 0, x
4 . | oop 2
5 .eval x+1, X
6 . endl oop
1 .eval 0+1, x
1 . eval 1+1, x
7
8 .drnoli st
12 .1 oop 3
13 .eval x+1, X
14 . endl oop
98 Assembler Directives SPRU186V-July 2011

Copyright © 2011, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

www.ti.com Directives Reference

.elfsym ELF Symbol Information

Syntax .elfsym name, SYM_SIZE(size)

Description The .elfsym directive provides additional information for symbols in the ELF format. This
directive is designed to convey different types of information, so the type, data pair is
used to represent each type. Currently, this directive only supports the SYM_SIZE type.
SYM_SIZE indicates the allocation size (in bytes) of the symbol indicated by name.

Example This example shows the use of the ELF symbol information directive.

. sect " . exanmp"

.alignnent 4

.elfsym ex_sym SYM S| ZE(4)
.ex_sym

.emsg/.mmsg/.wmsg Define Messages

Syntax .emsg string
.mmsg string

.wmsg string

Description These directives allow you to define your own error and warning messages. When you
use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however. It does not prevent the assembler from producing an object file.

Example In this example, the message ERROR -- MISSING PARAMETER is sent to the standard
output device.
Source file:

. gl obal PARAM
MSG EX .nmacro parndl

Jif $sym en(parnt) =0

.emsg "ERROR -- M SSI NG PARAVETER'
. el se

MVK parmi, Al

.endif

.endm

MBG_EX PARAM

M5G_EX
Listing file:
1 . gl obal PARAM
2 MSG EX .nmacro parndl
3 Jif $sym en(parnmt) =0
4 . ensg "ERROR -- M SSI NG PARAMETER'
5 . el se
6 MWK parnml, Al
SPRU186V-July 2011 Assembler Directives 99

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

7
8
9
10 00000000
1
1
1
1 00000000 00800028!
1
11
12 00000004
1
1
*kk k% USER ERRm *kkkk _
1
1
1
1 Error, No Vrnings

.endif
.endm

MBG_EX PARAM

i f $sym en(parm) = 0

. ensg "ERROR -- M SSI NG PARAMETER"

. el se

MWK PARAM Al

.endif

MSG_EX

Jif $sym en(parnl) =0

. ensg "ERROR -- M SSI NG PARAMETER"
ERROR -- M SSI NG PARAMETER

.el se

MWK parntl, Al

.endif

In addition, the following messages are sent to standard output by the assembler:

"t.asnt,
PARAMETER

ERROR! at
. ensg

1 Assenbly Error,
Errors in Source -

line 10:

"ERROR - -

[***** USER ERROR ***** -] ERROR -- M SSI NG

M SSI NG PARAMETER"

No Assenbly Warnings
Assenbl er Aborted

100 Assembler Directives

SPRU186V-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
.end End Assembly
Syntax .end
Description The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.
This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.
Ending a Macro
NOTE: Do not use the .end directive to terminate a macro; use the .endm
macro directive instead.
Example This example shows how the .end directive terminates assembly. If any source

statements follow the .end directive, the assembler ignores them.

Source file:
start: .text
ZERO A0
ZERO Al
ZERO A3
.end
ZERO A4
Listing file:
1 00000000 start: .text
2 00000000 000005EO0 ZERO A0
3 00000004 008425E0 ZERO Al
4 00000008 018C65E0 ZERO A3
5 .end

SPRU186V-July 2011

Assembler Directives

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

101

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

fclist/.fcnolist

Control Listing of False Conditional Blocks

Syntax fclist
fenolist
Description Two directives enable you to control the listing of false conditional blocks:
The .fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).
The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appear.
By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.
Example This example shows the assembly language and listing files for code with and without
the conditional blocks listed.
Source file:
a . set 0
b . set 1
.fclist ; list false conditional blocks
i f a
MVK 5, AO
. el se
MVK 0, A0
.endif
.fcnolist ; do not list false conditional blocks
i f a
MVK 5, AO
. el se
MVK 0, A0
.endif
Listing file:
1 00000000 a . set 0
2 00000001 b . set 1
3 .fclist ; list false conditional blocks
4 i f a
5 MVK 5, AO
6 .el se
7 00000000 00000028 MVK 0, A0
8 .endif
9 .fcnolist ; do not list false conditional blocks
13 00000004 00000028 MVK 0, A0
102 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

field

Syntax

Description

Example

Initialize Field

field value], size in bits]

The .field directive initializes a multiple-bit field within a single word (32 bits) of memory.
This directive has two operands:

* The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

* The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. If you do not specify a size, the assembler assumes
the size is 32 bits. If you specify a value that cannot fit in size in bits, the assembler
truncates the value and issues a warning message. For example, .field 3,1 causes
the assembler to truncate the value 3 to 1; the assembler also prints the message:

"t.asn, WARNING at line 1: [WO001] Value truncated to 1
.field 3, 1

Successive .field directives pack values into the specified number of bits starting at the
current 32-bit slot. Fields are packed starting at the least significant bit (bit 0), moving
toward the most significant bit (bit 31) as more fields are added. If the assembler
encounters a field size that does not fit in the current 32-bit word, it fills the remaining
bits of the current byte with 0s, increments the SPC to the next word boundary, and
begins packing fields into the next word.

You can use the .align directive to force the next .field directive to begin packing into a
new word.

If you use a label, it points to the byte that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun. Figure 4-6 shows how the directives in this
example affect memory.

l khkkhkhkkhkkhkhkhkhkhkhdhhdhhhhhkhkhkhkhkhrdrhhhhkhkdkhhhxx
2 * % Initialize a 24-bit field. **
3 EEEE R EEEEREEREEEEEEEEEEESEESEEEEEEESESEESE]
4 00000000 00BBCCDD .field 0BBCCDDh, 24

5

6 EEEE R EEEEREEREEEEEEEEEEESEESEEEEEEESESEESE]
7 ** Initialize a 5-bit field **
8 ER R R I I I S I I I I I S I
9 00000000 OABBCCDD .field O0Ah, 5

10

11 EE R I I I R I I I I I O I S
12 ** Initialize a 4-bit field **
13 ** in a new word. **
14 ER R R I I I S I I I I I S I S S I
15 00000004 0000000C .field 0Ch, 4

16

17 ER R R I I I S I I I I I S I
18 ** Initialize a 3-bit field **
19 khkkhkhkkhkhkhhkhkhkhdhhdhhhhhhkhkhkhkhrdrhhhhkhdhhhhxx
20 00000004 0000001C x: .field 01h, 3

21

22 khkhkhkhkkhkhhkhkhkhkhdhhhhhhhkhkhkhkhrdrhhhhhdkhhhxx
23 * % Initialize a 32-bit field * %
24 *x rel ocatable field in the *x
25 ** next word **
26 ER R R I I I S I I R I I I S I
27 00000008 00000004' field x

SPRU186V-July 2011

Assembler Directives 103

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

Figure 4-6. The .field Directive

Word Contents Code
31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 1 0
@ o | 101110111100110011011101| -Fieldonsccoon, 24
24-bit field
31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 1 0
0 o | 01010[101110111100110011011101| -fieldoan s
\—\/—/
5-bit field
24-bit field

31302928272625242322212019181716 1514131211109 8 7 6 543 2 1.0
©0 fooolo1o1o[1t01110111100110011011 1071 -Field ocn ¢

31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0
11

—_

1 0 of
\—\/—/
4-bit field
31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0
@1 | 0011100| .ficta om, 3
——
3-bit field

31302928272625242322212019181716 1514131211109
©1 [00000000000000000000000
31302928272625242322212019181716 1514131211109

2 [00000000000000000000000

76543210
olootf1 100 .ficta =
76543210
0000010 o0f

O | |O |

104 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
float Initialize Single-Precision Floating-Point Value
Syntax float value], ..., value,]
Description The .float directive places the IEEE single-precision floating-point representation of a

single floating-point constant into a word in the current section. The value must be a
floating-point constant or a symbol that has been equated to a floating-point constant.
Each constant is converted to a floating-point value in IEEE single-precision 32-bit
format.

The 32-bit value is stored exponent byte first, most significant byte of fraction second,
and least significant byte of fraction third, in the format shown in Figure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMM M
31 23 0

value = (-1)°x (1.0 + mantissa) x (2)°°"""*’
Legend: S =sign (1 bit)

E = exponent (8-bit biased)

M = mantissa (23-bit fraction)

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example Following are examples of the .float directive:
1 00000000 E9045951 .float -1.0e25
2 00000004 40400000 .float 3
3 00000008 42F60000 .float 123
SPRU186V-July 2011 Assembler Directives 105

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.global/.def/.ref

Syntax

Description

Example

Identify Global Symbols

.global symbol,], ... , symbol,]
.def symboly[, ... , symbol,]
.ref symbol,][, ... , symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the linker issues a multiple-definition error. The
.ref directive always creates a symbol table entry for a symbol, whether the module uses
the symbol or not; .global, however, creates an entry only if the module actually uses the
symbol.

A symbol can be declared global for either of two reasons:

« If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the linker looks for the symbol's definition in
other modules.

+ If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

This example shows four files. The filel.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The filel.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
filel.Ist uses the .global directive to identify these global symbols; file3.Ist uses .ref and
.def to identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref and
.def to identify the symbols.

filel.lst

1 A obal synbol defined in this file
2 .global INIT
3 d obal synbols defined in file2.lst
4 .global X Y, Z
5 00000000 INIT:
6 00000000 00902058 ADD. L1 0x01, A4, A1
7 00000004 00000000! .word X
8 .
9

10 .

11 .end

106 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Reference

.group/.gmember/.endgroup

Syntax

Description

file2.lst

1 ;

2
3 ;
4
5 00000001 X:

6 00000002 V:

7 00000003 Z:
8 00000000 00000000!

9 ;
10 ;
11 ;
12

file3.Ist

1

2
3 ;
4

5 00000000

6 00000000 00902058

7 00000004 00000000!

8 ;

9 ;
10 ;
11

file4.lst

1 ;

2

3 ;

4

5 00000001 X:

6 00000002 V:

7 00000003 Z:

8 00000000 00000000!

9 ;
10 ;
11 ;
12

d obal

d obal

d obal

d obal

I'NIT:

d obal

d obal

synbols defined in this file

.global X, Y, Z

synbol defined in filel.lst

.global INIT

. set 1

. set 2

. set 3

.word INIT

. end

synbol defined in this file
. def INIT

synbols defined in file4.lst
.ref XY, Z

ADD. L1 0x01, A4, Al
.wor d X

.end

synbols defined in this file

. def X VY, Z

synbol defined in file3.|st
.ref INIT

. set 1

. set 2

. set 3

.wor d INIT

.end

Define Common Data Section

.group group section name group type

.gmember section name

.endgroup

Three directives instruct the assembler to make certain sections members of an ELF
group section (see ELF specification for more information on group sections).

The .group directive begins the group declaration. The group section name designates
the name of the group section. The group type designates the type of the group. The

following types are supported:

0x0
Ox1

Regular ELF group

COMDAT ELF group

SPRU186V-July 2011

Submit Documentation Feedback

Assembler Directives

Copyright © 2011, Texas Instruments Incorporated

107

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

The .gmember directive designates section name as a member of the group.
The .endgroup directive ends the group declaration.

108 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.half/.short/.uhalf/.ushort |Initialize 16-Bit Integers

Syntax

Description

Example

.half value,[, ..., value,]
.short value,], ..., value,]
.uhalf value,[, ..., value,]

.ushort value,|, ..., value,]

The .half, .uhalf, .short, and .ushort directives place one or more values into
consecutive halfwords in the current section. Each value is placed in a 2-byte slot by
itself. A value can be either:

* An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with 0s.

The assembler truncates values greater than 16 bits.

If you use a label with .half, .short, .uhalf, or .ushort; it points to the location where the
assembler places the first byte.

These directives perform a halfword (16-bit) alignment before data is written to the
section. This guarantees that data resides on a 16-bit boundary.

When you use .half, .short, .uhalf, or .ushort in a .struct/.endstruct sequence, they define
a member's size; they do not initialize memory. For more information, see the
.struct/.endstruct/.tag topic.

In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 00000000 .space 100h * 16
2 00001000 0000000A . hal f 10, -1, "abc", 'a
00001002 OOOOFFFF
00001004 00000061
00001006 00000062
00001008 00000063
0000100a 00000061
3 0000100c 00000008 STRN .short 8, -3, "def", 'b'
0000100e OOOOFFFD
00001010 00000064
00001012 00000065
00001014 00000066
00001016 00000062

SPRU186V-July 2011

Assembler Directives 109

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.if/.elseif/.else/.endif Assemble Conditional Blocks

Syntax

Description

Example

.if well-defined expression
[.elseif well-defined expression]
[-else]

.endif

Four directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The well-defined expression
is a required parameter.

» If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).

« If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).

The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif directive is optional in the conditional block,
and more than one .elseif can be used. If an expression is false and there is no .elseif
statement, the assembler continues with the code that follows a .else (if present) or a
.endif.

The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly block, and
the .elseif directive can be used more than once within a conditional assembly block.

See Section 3.10.4 for information about relational operators.

This example shows conditional assembly:

1 00000001 SYML . set 1
2 00000002 SYM2 . set 2
3 00000003 SYM3 . set 3
4 00000004 SYM4 . set 4
5
6 1 f_4: i f SYMA = SYM * SYMR
7 00000000 00000004 .byte SYmM4 ; Equal val ues
8 .el se
9 . byte SYM * SYMR ; Unequal val ues
10 .endif
11
12 I f_5: Jif SYML <; = 10
13 00000001 0000000A .byte 10 ; Less than / equal
14 .el se
15 .byte SYmL ; Greater than
16 .endif
17
18 1 f_6: i f SYMB * SYM2 | = SYM4 + SYMR
19 .byte SYMB * SYme ; Unequal val ue
20 .el se
21 00000002 00000008 .byte SYM4 + SYM4 ; Equal val ues
22 .endif
23
24 1f_7: i f SYML = SYM
25 .byte SYmL

110 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
26 .elseif SYM + SYMB = 5
27 00000003 00000005 .byte SYM? + SYMB
28 .endif
SPRU186V-July 2011 Assembler Directives 111

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.import/.export/.hidden/.protected Set Dynamic Visibility of Global Symbol

Syntax .import "symbolname"
.export "symbolname"
.hidden "symbolname"
.protected "symbolname"
Description These directives set the dynamic visibility of a global symbol. Each takes a single symbol
name, optionally enclosed in double-quotes.
+ The .import directive sets the visibility of symbolname to STV_IMPORT.
* The .export directive sets the visibility of symbolname to STV_EXPORT.
» The .hidden directive sets the visibility of symbolname to STV_HIDDEN.
* The .protected directive sets the visibility of symbolname to STV_PROTECTED.
See Section 7.12 for an explanation of symbol visibility.
Theses directives are commonly used in the context of dynamic linking, for more detalil
see the Dynamic Linking wiki site
(http://processors.wiki.ti.com/index.php/C6000 Dynamic_Linking).
112 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.int/.long/.word/.uint/.uword Initialize 32-Bit Integers

Syntax .int value,[, ..., value,]
long value,], ..., value,]
.word value,], ..., value,]
.uint value,][, ... , value, |
.uword value,[, ..., value,]
Description The .int, .uint, .long, .word, and .uword directives place one or more values into

consecutive words in the current section. Each value is placed in a 32-bit word by itself
and is aligned on a word boundary. A value can be either:

* An expression that the assembler evaluates and treats as a 32-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 32-bit field,
which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

Example 1 This example uses the .int directive to initialize words. Notice that the symbol SYMPTR
puts the symbol's address in the object code and generates a relocatable reference
(indicated by the - character appended to the object word).

1 00000000 .space 73h

2 00000000 . bss PAGE, 128

3 00000080 . bss SYMPTR, 3

4 00000074 003Cl12E4 |INST: LDWD2 *++B15[0], AO

5 00000078 0000000A .int 10, SYMPTR, -1, 35 + "a', INST

0000007c 00000080-
00000080 FFFFFFFF
00000084 00000084
00000088 00000074

Example 2 This example initializes two 32-bit fields and defines DATL1 to point to the first location.
The contents of the resulting 32-bit fields are FFFABCDh and 141h.

1 00000000 FFFFABCD DATL: .long OFFFFABCDh, ' A" +100h
00000004 00000141

Example 3 This example initializes five words. The symbol WordX points to the first word.

1 00000000 00000C80 ;WordX .word 3200, 1+' AB', -' AF', OF410h, ' A
00000004 00004242
00000008 FFFFB9BF
0000000c 0000F410
00000010 00000041

SPRU186V-July 2011 Assembler Directives 113

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Jabel

Syntax

Description

Examp

le

Create a Load-Time Address Label

.label symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at a
different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address
so that references to the section (such as branches) are correct when the code runs.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of
the code that relocates the section.

This example shows the use of a load-time address label.

sect ".exanp"
.l abel exanp_load ; |oad address of section

start: ; run address of section
<code>

finish: ; run address of section end
.l abel exanp_end ; |oad address of section end

See Section 7.5.5 for more information about assigning run-time and load-time
addresses in the linker.

114

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

length/.width

Syntax

Description

Example

Set Listing Page Size

Jength [page length]
.width [page width]

Two directives allow you to control the size of the output listing file.

The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.

« Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.

e Minimum length: 1 line
* Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line

assembled and the lines following. You can reset the page width with another .width
directive.

» Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.

¢ Minimum width: 80 characters
¢ Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.

The assembler does not list the .width and .length directives.

The following example shows how to change the page length and width.

Khkkhkhhkhhkhhkhhhhhhhhhhhhhhhhhhkhhhhhkhhkhhkhkhkxx

* % Page |l ength = 65 lines * %
*x Page width = 85 characters *x
khkkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkhhkkhhkkhhhkhhkdhdhhkhhhkhkdhxdhhxxx*%

.length 65

.width 85
khkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk**x*%x
*x Page length = 55 lines *x
*x Page wi dth = 100 characters *x
khkkhkkhkkhkkhkkhkkhkhkhkhhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk*x*x*%x

.length 55

.width 100

SPRU186V-July 2011

Assembler Directives 115

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Jdist/.nolist

Syntax

Description

Example

Start/Stop Source Listing

Jist

.nolist

Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the --asm_listing option on the command line (see

Section 3.3), the assembler ignores the .list directive.

This example shows how the .list and .nolist directives turn the output listing on and off.
The .nolist, the table: .data through .byte lines, and the .list directives do not appear in
the listing file. Also, the line counter is incremented even when source statements are
not listed.

Source file:
.data
.space 0CCh
.text
ABS A0, A1
.nolist

table: .data
.wor d -1
.byte OFFh
st
.text
%Y AO, Al
.data

coef f .wor d 00h, Oah, Obh

Listing file:
1 00000000 .data
2 00000000 .space 0CCh
3 00000000 . text
4 00000000 00800358 ABS AO, Al
5
13
14 00000004 .text
15 00000004 008001A0 \Y4 AOQ, Al
16 000000d1 .data

17 000000d4 00000000 coeff .word 00h, Oah, Obh
000000d8 0000000A
000000dc 0000000B

116 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Jloop/.endloop/.break Assemble Code Block Repeatedly

Syntax

Description

Example

Joop [well-defined expression]
.break [well-defined expression]

.endloop

Three directives allow you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of loops to be performed). If there is no
well-defined expression, the loop count defaults to 1024, unless the assembler first
encounters a .break directive with an expression that is true (nonzero) or omitted.

The .break directive, along with its expression, is optional. This means that when you
use the .loop construct, you do not have to use the .break construct. The .break directive
terminates a repeatable block of code only if the well-defined expression is true
(nonzero) or omitted, and the assembler breaks the loop and assembles the code after
the .endloop directive. If the expression is false (evaluates to 0), the loop continues.

The .endloop directive terminates a repeatable block of code; it executes when the
.break directive is true (nonzero) or when the number of loops performed equals the loop
count given by .loop.

This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.

1 .eval 0, x

2 CCEF .loop

3 .wor d x*100

4 .eval x+1, X

5 . break X =6

6 . endl oop
1 00000000 00000000 .word 0*100
1 . eval 0+1, x
1 . break 1=
1 00000004 00000064 .word 1*100
1 . eval 1+1, X
1 . break 2 =6
1 00000008 000000C8 .word 2*100
1 . eval 2+1, X
1 . break 3 =6
1 0000000c 0000012C .word 3*100
1 . eval 3+1, X
1 . break 4 =
1 00000010 00000190 .word 4*100
1 . eval 4+1, x
1 . break 5=6
1 00000014 000001F4 .word 5%*100
1 . eval 5+1, X
1 . break 6 =6

SPRU186V-July 2011 Assembler Directives 117

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.macro/.endm Define Macro
Syntax macname .macro [parameter,|, ... , parameter,]]

model statements or macro directives

.endm

Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source
statement's label field.

.macro identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for the

.macro directive.

model statements are instructions or assembler directives that are executed each
time the macro is called.

macro directives are used to control macro expansion.
.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 5.

118 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.map/.clearmap

Syntax

Description

Example

Assign a Variable to a Register

.map symbol, / register, [, symbol, / register, , ...]

.clearmap

The .map directive is used by the compiler when the input is linear assembly. The
compiler tries to keep your symbolic names for registers defined with .reg by creating
substitution symbols with .map.

The .map directive is similar to .asg, but uses a forward slash instead of a comma; and
allows single quote characters in the symbolic names. For example, this linear assembly
input:

The .clearmap directive is used by the compiler to undefine all current .map substitution
symbols.

See the TMS320C6000 Optimizing Compiler User's Guide for details on using the .map
directive in linear assembly code.

The .map directive is similar to .asg, but uses a forward slash instead of a comma; and
allows single quote characters in the symbolic names. For example, this linear assembly
input:
fn: .cproc a, b, ¢
.reg x, y, z

ADD a, b, z
ADD z, c, z
.return z
. endproc

Becomes this assembly code output:

fn:

. map al A4

. map b/ B4

. map c/ A6

. map z/ A4

. map z' | A3

RET . S2 B3
ADD . L1X a, b,z
ADD . L1 z',c,z
NOP 3

SPRU186V-July 2011

Assembler Directives 119

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.mlib

Syntax

Description

Example

Define Macro Library

.mlib "filename"

The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file

2. Any directories hamed with the --include_path assembler option
3. Any directories specified by the C6X_A_DIR environment variable
4. Any directories specified by the C6X_C_DIR environment variable

See Section 3.5 for more information about the --include_path option.

When the assembler encounters a .mlib directive, it opens the library specified by the
filename and creates a table of the library's contents. The assembler enters the names
of the individual library members into the opcode table as library entries. This redefines
any existing opcodes or macros that have the same name. If one of these macros is
called, the assembler extracts the entry from the library and loads it into the macro table.
The assembler expands the library entry in the same way it expands other macros, but it
does not place the source code into the listing. Only macros that are actually called from
the library are extracted, and they are extracted only once.

See Chapter 5 for more information on macros and macro libraries.

The code creates a macro library that defines two macros, incl.asm and decl.asm. The
file incl.asm contains the definition of incl and decl.asm contains the definition of dec1l.

incl.asm decl.asm
* Macro for increnenting * Macro for decrenenting
incl .macro A decl .macro A
ADD A 1, A SUB A1, A
.endm .endm

Use the archiver to create a macro library:
ar6x -a mac incl.asmdecl. asm

Now you can use the .mlib directive to reference the macro library and define the
incl.asm and decl.asm macros:

1 .mib "mac.lib"
2
3 * Macro Call
4 00000000 incl A0
1 00000000 000021A0 ADD A0, 1, A0
5
6 * Macro Call
7 00000004 decl BO
1 00000004 0003E1A2 SUB BO, 1, BO

120 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.mlist/. mnolist

Syntax

Description

Example

Start/Stop Macro Expansion Listing

.mlist

.mnolist

Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.
The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 5 for more information on macros and macro libraries. See the
loop/.break/.endloop topic for information on conditional blocks.

This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR 3 . macro P1, P2, P3
2 .string ":pl:", ":p2:", ":p3:"
3 .endm
4
5 00000000 STR 3 "as", "I", "ant
1 00000000 0000003A .string ":pl:", ":p2:", ":p3:"
00000001 00000070
00000002 00000031
00000003 0000003A
00000004 0000003A
00000005 00000070
00000006 00000032
00000007 0000003A
00000008 0000003A
00000009 00000070
0000000a 00000033
0000000b 0000003A
6 .mol i st
7 0000000c STR 3 "as", "I", "ant
8 .mist
9 00000018 STR 3 "as", "I", "anf
1 00000018 0000003A .string ":pl:", ":p2:", ":p3:"

00000019 00000070
0000001a 00000031
0000001b 0000003A
0000001c 0000003A
0000001d 00000070
0000001e 00000032
0000001f 00OO0003A
00000020 0000003A
00000021 00000070
00000022 00000033
00000023 0000003A

SPRU186V-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Assembler Directives 121

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.newblock Terminate Local Symbol Block
Syntax .newblock
Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.
A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, cannot be used in expressions, and do not qualify for branch expansion if used
with a branch. They can be used only as operands in 8-bit jump instructions. Local labels
are not included in the symbol table.
After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.
See Section 3.9.2 for more information on the use of local labels.
Example This example shows how the local label $1 is declared, reset, and then declared again.
1 .global tablel, table2
2
3 00000000 00000028! MVKL tabl el, AO
4 00000004 00000068! M/KH tabl el, AO
5 00000008 008031A9 MVK 99, Al
6 0000000c 01084800 || ZERO A2
7
8 00000010 80000212 $1:[Al] B $1
9 00000014 01003674 STW A2, *A0++
10 00000018 0087E1AQ SuB Al, 1, Al
11 0000001c 00004000 NOP 3
12
13 .newbl ock ; undefine $1
14
15 00000020 00000028! MVKL tabl e2, A
16 00000024 00000068! M/KH tabl e2, A
17 00000028 008031A9 MVK 99, Al
18 0000002c 01082900 || SuB A2,1, A2
19
20 00000030 80000212 $1:[Al] B $1
21 00000034 01003674 STW A2, *A0++
22 00000038 0087E1AQ SuB Al, 1, Al
23 0000003c 00004000 NOP 3
122 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.nocmp Do Not Utilize 16-Bit Instructions in Section

Syntax .nocmp

Description The C6400+, C6740, and C6600 .nocmp directive instructs the compiler to not utilize
16-bit instructions for the code section .nocmp appears in. The .nocmp directive can
appear anywhere in the section.

Example In the example, the section one is not compressed, whereas section two is compressed.

.sect "one"
LDW *A4, A5
LDW *B4, A5

. nocnp

NOP 4

ADD A4, A5, A6
ADD B4, B5, B6
NOP

.sect "two"
ADD A4, A5, A6
NOP

NOP

SPRU186V-July 2011 Assembler Directives 123

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.noremark/.remark

Syntax

Description

Example

Control Remarks

.noremark num

.remark [num]

The .noremark directive suppresses the assembler remark identified by num. A remark
is an informational assembler message that is less severe than a warning.

This directive is equivalent to using the -ar[num] assembler option.
The .remark directive re-enables the remark(s) previously suppressed.

This example shows how to suppress the R5002 remark:

Partial source file:

;. ¢l 6x -mv6700+ usenorenark.asm
. noremark 5002
ADDSP A4, A4, A4

Resulting listing file:

"usenorenar k. asni’, REMARK at line 4: [R5002] An ADDSP/ SUBSP, ADDDP/ SUBDP
instruction has no unit
specifier, but the assenbler can

place it on the .L or .S unit
on C6700+. On C6700+, the |ack
of unit specifier may cause an
uni nt ended functional unit
conflict in 4/7th cycle on the
.L or .S unit. Please check and
add unit specifiers to these
instructions to avoid this
hazard. Details can be found in
section "Constrains on
Fl oati ng- Poi nt | nstructi ons" and
"Functional Unit Constraints" in
docunent SPRU733

ADDSP A4, A4, A4

124 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.option
Syntax

Description

Example

Select Listing Options

.option option,[, option,,. . .]

The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:

A turns on listing of all directives and data, and subsequent expansions, macros,

and blocks.
turns off the listing of certain d

limits the listing of .long directi
turns off macro expansions in

turns on listing (performs .list).

limits the listing of .string direc
limits the listing of .word and .i

Xs1XTOoOzZzZrITow

option (see Section 3.3).

Options are not case sensitive.

This example shows how to limit the listings of the .byte, .char, .int, long, .word, and

.string directives to one line each.
*kkkkkkkk*k
** Linit
** .int
* * d|

kkkkkkkkk

[uy

00000000
00000003
9 00000008
10 0000001c
11 00000024
12 0000002c
13

14 kkkkkkkkk

000000BD
000000BC
0000000A
AABBCCDD
000015AA
00000052

o~NO O~ WDN

15 ** Re
16 *kkkkkkkk*k
17 .
18 00000035
00000036
00000037
19 00000038
00000039
0000003a
20 0000003c
00000040
00000044
00000048
0000004c
21 00000050
00000054
22 00000058
0000005c¢

000000BD .
000000B0
00000005
000000BC
000000C0
00000006
0000000A
00000084
00000061
00000062
00000063
AABBCCDD
00000259
000015AA
00000078

.wor d

limits the listing of .byte and .char directives to one line.

irectives (same effect as .drnolist).

limits the listing of .half and .short directives to one line.

ves to one line.
the listing.

turns off listing (performs .nolist).

resets any B, H, L, M, T, and W (turns off the limits of B, H, L, M, T, and W).

tives to one line.
nt directives to one line.

produces a cross-reference listing of symbols. You can also obtain a
cross-reference listing by invoking the assembler with the --cross_reference

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x

the listing of .byte, .char, **
, .word, and .string **
rectives to 1 line each. *x

khkkhkhkhkhhkhhkhhhhhhhhhhhhhhhkhdhkh*k

.option B, W T

.byte -'C, O0BOh, 5

. char -'D, 0COh, 6

.int 10, 35 + 'a', "abc"
.long OAABBCCDDh, 536 + 'A
.word 5546, 78h

.string "Registers"
khkkkkhkkkhkkhkkhkhkkhkhkkhhkkhkhkhkhkhkkhhkkdhkhkkkkxkx%x
set the listing options. **
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkkkkkkkk*%x
option R

byte -'C, 0BOh, 5

. char "D, 0COh, 6

.int 10, 35 + 'a', "abc"
.long O0AABBCCDDh, 536 + 'A

5546, 78h

SPRU186V-July 2011

Submit Documentation Feedback

Assembler Directives

Copyright © 2011, Texas Instruments Incorporated

125

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

23 00000060 00000052 .string "Registers"
00000061 00000065
00000062 00000067
00000063 00000069
00000064 00000073
00000065 00000074
00000066 00000065
00000067 00000072
00000068 00000073

.page Eject Page in Listing
Syntax .page
Description The .page directive produces a page eject in the listing file. The .page directive is not
printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.
Example This example shows how the .page directive causes the assembler to begin a new page
of the source listing.
Source file:
Source file (generic)
.title "xx*x%* Pgge Directive Exanple ****"
. page
Listing file:
TMS320C6000 Assenbl er Ver si on X. XX Day Ti me Year
Copyright (c) 1996-2009 Texas Instrunents |ncorporated
x* Page Directive Exanple * PAGE 1
2 ;
3 ;
4 ; :
TMS320C6000 Assenbl er Ver si on X. Xxx Day Ti nme Year
Copyright (c) 1996-2009 Texas Instrunents | ncorporated
xx Page Directive Exanple **** PAGE 2
No Errors, No Warnings
126 Assembler Directives SPRU186V-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.sect

Syntax

Description

Example

Assemble Into Named Section

.sect " section name "
.sect " section name " [{RO|RW}] [[{ALLOC|NOALLOC}]

The .sect directive defines a named section that can be used like the default .text and

.data sections. The .sect directive tells the assembler to begin assembling source code
into the named section.

The section name identifies the section. The section name must be enclosed in double

guotes. A section name can contain a subsection name in the form section name :

subsection name.

In ELF mode the sections can be marked read-only (RO) or read-write (RW). Also, the

sections can be marked for allocation (ALLOC) or no allocation (NOALLOC). These
attributes can be specified in any order, but only one attribute from each set can be
selected. RO conflicts with RW, and ALLOC conflicts with NOALLOC. If conflicting

attributes are specified the assembler generates an error, for example:

"t.asnt, ERROR!

at

line 1:[EOO00] Attribute RO cannot be conbined with attr

.sect "illegal _sect", RO RW

The extra operands are allowed only in ELF mode. They are ignored but generate a

warning in COFF mode. For example:

"t.asnt, WARNI NG

at line 1:[WO000] Trailing operands ignored
.sect "cosnt_sect", RO

See Chapter 2 for more information about sections.

This example defines two special-purpose sections, Sym_Defs and Vars, and assembles

code into them.

2

3

4 00000000
5 00000000
6 00000004
7
8

11 00000000
12 00000000
13 00000004
14 00000008

19 00000008
20 00000008
21 0000000c

26 0000000c
27 0000000c

000005EO0
008425E0

4048F5C3
000007D0
00000001

010000A8
018000A8

00000019

khkhkkhkkhkhkhhkhkhhhkhhkkkkkkkkkk*k*k*x*%

** Begi n assenbling into .text section. **
R R R I S R I I I R R R I I I S I
.text
ZERO A0
ZERO Al
R R R R R SRR R R R R R R R R R R
* % Begi n assenbling into vars section. * %
IR R E SRS EEEEEEEEEEEEEEREEREEREEEEEEEEEEESEEEEEERSEES]
. sect "vars"
pi .float 3.14
max .int 2000
mn .int 1

khkhkkhkkhkhkhkhkhkhhhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkkkkkkkkkk*k*x*%

*x Resume assenbling into .text section. **

khkhhkhkhhkhhkhhhhhhhhhkhhhhhkhhkhhhkhhkhhkhhhkhhkhhkhhkhk*

.text

MVK 1, A2

MVK 1, A3
khkhkhkhkkhkhhkhkhkhkhkdhkhhkhhdhkhhkhkhddhhhhhdhkhkhrhhrhhhhkhdhhhhxx
* % Resune assenbling into vars section. * %
IR R E S EEEEEEEEEEEEEEEEREEREREEEEEESEEEEESEESEEEERSEES]

. sect "vars"
count .short 25

SPRU186V-July 2011

Submit Documentation Feedback

Assembler Directives

Copyright © 2011, Texas Instruments Incorporated

127

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.set/.equ

Syntax

Description

Example

Define Assembly-Time Constant

symbol .set value
symbol .equ value

The .set and .equ directives equate a constant value to a symbol. The symbol can then
be used in place of a value in assembly source. This allows you to equate meaningful
names with constants and other values. The .set and .equ directives are identical and
can be used interchangeably.

* The symbol is a label that must appear in the label field.
* The value must be a well-defined expression, that is, all symbols in the expression
must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is
assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value is not
part of the actual object code and is not written to the output file.

Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the .global/.def/.ref topic). In this way, you can define global absolute
constants.

This example shows how symbols can be assigned with .set and .equ.

1 khkkhkhkkhhkkhkhkhkhhkhhdhhkdhdhdhhdhdhddrddhdhrdrxdrhdhxdxdxx*x
2 ** Equate symbol AUX RL to register Al *x
3 *x and use it instead of the register. *x
4 R R S S R O
5 00000001 AUX R1 . set Al

6 00000000 00B802D4 STH AUX_R1, *+B14

7

8 khkhkkkhkhkhkhkhkhhhhkkhkkkkkkkkkk*k*x*%
9 *x Set symbol index to an integer expr. *x
10 > and use it as an i mmedi ate operand. >
ll khkhkhkhkhkhhkhhhkhhkkkkhkkkkkkk*k*k*x*%
12 00000035 |INDEX .equ 100/ 2 +3

13 00000004 01001ADO ADDK I NDEX, A2

14

15 IR E SRR EEEEEEEEEEEEEREEREEEEEEEEEESEEEEESEEEEEESES]
16 ** Set synbol SYMIAB to a rel ocatable expr. **
17 *x and use it as a rel ocatabl e operand. *x
18 IR EEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEESES]
19 00000008 0000000A LABEL .word 10

20 00000009' SYMIAB . set LABEL + 1

21

22 ER R R S R R R O R R
23 *x Set synmbol NSYMS equal to the synbol *x
24 *x INDEX and use it as you woul d | NDEX. *x
25 R R S S R R O O O
26 00000035 NSYMs . set | NDEX

27 0000000c 00000035 .word NSYMS

128 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
.space/.bes Reserve Space
Syntax [label] .space size in bytes
[label] .bes size in bytes
Description The .space and .bes directives reserve the number of bytes given by size in bytes in the
current section and fill them with Os. The section program counter is incremented to
point to the word following the reserved space.
When you use a label with the .space directive, it points to the first byte reserved. When
you use a label with the .bes directive, it points to the last byte reserved.
Example This example shows how memory is reserved with the .space and .bes directives.
l IR EEEEEEEEEEEEEEEEEEEEEREEREEREEEEEEEEEEEERSEESEEESEESESESSES
2 *x Begin assenbling into the .text section. *x
3 EE R R I S R I I S I R R S I I R R S I S I R R S O I I
4 00000000 .text
5 IR SRR RS EEREE]
6 ** Reserve OF0 bytes (60 words in .text section). **
7 IR EEEEEEEEEEE SRS EEEEEEEREEREEREEEEEEEEEEEERSEESEEEEESEESESSE]
8 00000000 .space OFOh
9 000000f 0 00000100 .word 100h, 200h
000000f 4 00000200
10 EEEE RS EE S
11 > Begi n assenbling into the .data section. >
12 IR EEEEEEEEEEE SRR SRR EEEEEREEREEREEEEEEEEEEEERSEESEEEEESEESESSES
13 00000000 .data
14 00000000 00000049 .string "In .data"
00000001 0000006E
00000002 00000020
00000003 0000002E
00000004 00000064
00000005 00000061
00000006 00000074
00000007 00000061
15 IR SRR R RS EEE S
16 > Reserve 100 bytes in the .data section; >
17 ** RES_1 points to the first word *x
18 *x that contains reserved bytes. *x
19 EE R R I R I I R I R R R I I I R R I I I R O O I
20 00000008 RES 1: .space 100
21 0000006c 0000000F .word 15
22 00000070 00000008" .word RES_ 1
23 IR EEEEEEEEEEEEEEEEEEEEEREEREEREEEEEEEEEEEERSEESEEEEESESESSE]
24 *x Reserve 20 bytes in the .data section; *x
25 > RES 2 points to the last word >
26 *x that contains reserved bytes. *x
27 IR SRR S EEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
28 00000087 RES 2: .bes 20
29 00000088 00000036 .word 36h
30 0000008c 00000087" .word RES 2
SPRU186V-July 2011 Assembler Directives 129

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.sslist/.ssnolist

Syntax

Description

Example

Control Listing of Substitution Symbols

.sslist

.ssnolist

Two directives allow you to control substitution symbol expansion in the listing file:

The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion in the listing file.

By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.

Lines with the pound (#) character denote expanded substitution symbols.

This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.

1 00000000 . bss X, 4
2 00000004 . bss y, 4
3 00000008 . bss z,4
4
5 addm .macro srcl,src2, dst
6 LDW *+Bl4(:srcl:), A0
7 LDW *+Bl14(:src2:), Al
8 NOP 4
9 ADD A0, A1, AO
10 STW A0, *+B14(:dst:)
11 .endm
12
13 00000000 addm X,Y,Z
1 00000000 0000006C LDW *+B14(x), A0
1 00000004 0080016C LDW *+Bl4(y), Al
1 00000008 00006000 NOP 4
1 0000000c 000401EO0 ADD A0, A1, A0
1 00000010 0000027C STW A0, *+B14(z)
14
15 .sslist
16 00000014 addm X, Y,z
1 00000014 0000006C- LDW *+B14(:srcl:), A0
LDW *+B14(x), A0
1 00000018 0080016C LDW *+Bl4(:src2:), Al
LDW *+Bl4(y), Al
1 0000001c 00006000 NOP 4
1 00000020 000401EO ADD A0, A1, AO
1 00000024 0000027C STW A0, *+B14(: dst:)
STW A0, *+B14(z)

17

130 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.string/.cstring

Syntax

Description

Example

Initialize Text

.string {expr, | "string,"} [, ... , {expr, | "string,"}]
.cstring {expr, | "string,"} [, ... , {expr, | "string,"}]

The .string and .cstring directives place 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number.

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not
add a NUL character. In addition, .cstring interprets C escapes (\\ \a \b \f \n \r \t \v
\<octal>).

The assembler truncates any values that are greater than eight bits. Operands must fit
on a single source statement line.

If you use a label, it points to the location of the first byte that is initialized.

When you use .string and .cstring in a .struct/.endstruct sequence, the directive only
defines a member's size; it does not initialize memory. For more information, see the
.struct/.endstruct/.tag topic.

In this example, 8-bit values are placed into consecutive bytes in the current section.
The label Str_Ptr has the value Oh, which is the location of the first initialized byte.

1 00000000 00000041 Str_Ptr: .string "ABCD'
00000001 00000042
00000002 00000043
00000003 00000044
2 00000004 00000041 .string 41h, 42h, 43h, 44h
00000005 00000042
00000006 00000043
00000007 00000044
3 00000008 00000041 .string "Austin", "Houston"
00000009 00000075
0000000a 00000073
0000000b 00000074
0000000c 00000069
0000000d 0000006E
0000000e 00000048
0000000f 0000006F
00000010 00000075
00000011 00000073
00000012 00000074
00000013 0000006F
00000014 0000006E
4 00000015 00000030 .string 36 + 12

SPRU186V-July 2011

Assembler Directives 131

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.struct/.endstruct/.tag Declare Structure Type

Syntax

Description

[stag] .struct [expr]
[mem,] element [expr,]
[mem,] element [expr,]
[mem,] .tag stag [expr,]
[memy,] element [expry]
[size] .endstruct

label tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

» The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

* The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

* The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, .field, and .tag. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. The .tag
directive is a special case because stag must be used (as in the definition of stag).

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the structure.

Directives That Can Appear in a .struct/.endstruct Sequence

NOTE: The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on word boundaries. Empty
structures are illegal.

132 Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1 1 real _rec .struct ; stag
2 00000000 nom .int ; menmberl =0
3 00000004 den .int ; nmenber2 =1
4 00000008 real _len .endstruct ; real _len =2
5
6 00000000 0080016C- LDW *+Bl4(real +real _rec.den), Al
7 access structure
8
9 00000000 .bss real, real _len ; allocate memrec
10
Example 2 11 cpl x_rec .struct ; stag
12 00000000 reali .tag real _rec ; menberl =0
13 00000008 i magi .tag real _rec ; menber2 = 2
14 00000010 cplx_len .endstruct ; cplx_len = 4
15
16 conpl ex .tag cplx_rec ; assign structure
17 ; attribute
18 00000008 .bss conplex, cplx_len ; allocate memrec
19
20 00000004 0100046C- LDW *+Bl14(conpl ex. i nagi . nom), A2
21 access structure
22 00000008 0100036C- LDW *+Bl4(conpl ex.reali.den), A2
23 , access structure
24 0000000c 018C4A78 CWPEQ A2, A3, A3
Example 3 1 .struct ; no stag puts
2 ; menms into gl obal
3 ; synbol table
4
5 00000000 X .byte ; create 3 dim
6 00000001 Y . byte ; tenpl ates
7 00000002 Z .byte
8 00000003 .endstruct
Example 4 1 bit _rec .struct ; stag
2 00000000 stream .string 64
3 00000040 bit7 .field 7 ; bit7 = 64
4 00000040 bit1 .field 9 ; bit9 = 64
5 00000042 bit5 .field 10 ; bith = 64
6 00000044 x_int . byte ; X_int = 68
7 00000045 bit_len . endstruct ; length = 72
8
9 bits .tag bit_rec

10 00000000
11

12 00000000 0100106C- LDW *+Bl4(bits.bit7), A2

13 ; load field

14 00000004 0109E7A0 AND OFh, A2, A2 mask of f garbage

.bss bits, bit_len

SPRU186V-July 2011 Assembler Directives 133

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.symdepend/.weak Effect Symbol Linkage and Visibility

Syntax

Description

.symdepend dst symbol name[, src symbol name]

.weak symbol name

These directives are used to effect symbol linkage and visibility. The .weak directive is
only valid when ELF mode is used.

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

The .weak directive identifies a symbol that is used in the current module but is defined
in another module. The linker resolves this symbol's definition at link time. The .weak
directive is equivalent to the .ref directive, except that the reference has weak linkage.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the linker issues a multiple-definition error. The
.weak directive always creates a symbol table entry for a symbol, whether the module
uses the symbol or not; .symdepend, however, creates an entry only if the module
actually uses the symbol.

A symbol can be declared global for either of two reasons:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .weak directive tells the assembler that the symbol is defined in an
external module. This prevents the assembler from issuing an unresolved reference
error. At link time, the linker looks for the symbol's definition in other modules.

« If the symbol is defined in the current module, the .symdepend directive declares that
the symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

134

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.tab

Syntax

Description

Example

Define Tab Size

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input are

translated to size character spaces in the listing. The default tab size is eight spaces.

In this example, each of the lines of code following a .tab statement consists of a single
tab character followed by an NOP instruction.

Source file:

; default tab size

Listing file:

1

o ~NOA~WN

©

12
13
14

00000000
00000004
00000008

0000000c
00000010
00000014

00000018
0000001c
00000020

00000000
00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000

; default tab size
NOP
NOP
NOP
.tab4

.tab 16

SPRU186V-July 2011

Submit Documentation Feedback

Assembler Directives

Copyright © 2011, Texas Instruments Incorporated

135

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

text

Syntax

Description

Examp

le

Assemble Into the .text Section

text

The .text directive tells the assembler to begin assembling into the .text section, which
usually contains executable code. The section program counter is set to 0 if nothing has
yet been assembled into the .text section. If code has already been assembled into the
.text section, the section program counter is restored to its previous value in the section.

The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.

For more information about sections, see Chapter 2.

This example assembles code into the .text and .data sections.
l khkkkkhkkkhkkhkkhkhkkhkhkkhhkhhkhkkhhkkhhkhhhkhhkkhhkhhkhhkhhhkhkdxkx*k

** Begin assenbling into .data section. **
khkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkkkk*k*x*%x

00000000 .data
00000000 00000005 .byte 56
00000001 00000006

a b wnN

khkhhkhhhkhhkhhhhhhhhhkhhhhhhhkhhhhhkhkhhkhkhkkx

o0 ~N O

** Begin assenbling into .text section. **
9 R EEE RS EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEESEE]
10 00000000 . text
11 00000000 00000001 .byte 1
12 00000001 00000002 .byte 2,3

00000002 00000003
13

14 khkkhkhkkhhkhhkhhhkhhhhkhhhhhhhhhhhhhhkhhhhkhkhkxx

15 ** Resume assenbling into .data section.**
16 khkkhkkhkkhkkhkkhkkhkkhhhkkkkkk*kkkk*k*x*%x
17 00000002 .data
18 00000002 00000007 .byte 7,8

00000003 00000008
19

20 khkhhkhhhkhhkhhhhhhhhhkhhhkhhkhhkhhhhhkhhkhhkhkhkxx

21 ** Resume assenbling into .text section.**
22 IR EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEESEE]
23 00000003 . text

24 00000003 00000004 .byte 4

136

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

title

Syntax

Description

Example

Define Page Title

title "string"

The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.

The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:

*** WARNING |ine x: WO001: String is too long - will be truncated

The assembler prints the title on the page that follows the directive and on subsequent

pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.

In this example, one title is printed on the first page and a different title is printed on
succeeding pages.

Source file:
.title "**** Fast Fourier Transforns ****"

.title "**** F|oating-Point Routines ****"

. page
Listing file:
TMS320C6000 Assenbl er Ver si on X. XX Day Ti nme Year
Copyright (c) 1996-2009 Texas Instrunents | ncorporated
**** Fast Fourier Transfornms **** PAGE 1
2 ;
3 ;
4 ; :
TMS320C6000 Assenbl er Ver si on X. XX Day Ti me Year
Copyright (c) 1996-2009 Texas |nstrunments | ncorporated
**** | oating-Point Routines **** PAGE 2

No Errors, No Warnings

SPRU186V-July 2011

Assembler Directives 137

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.union/.endunion/.tag Declare Union Type

Syntax

Description

[stag] .union [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tagstag [expr,]

[memy] element [expry]
[size] .endunion
label tag stag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

* The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

* The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

* The mem,, is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

* The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. An element can also be a complete
declaration of a nested structure or union, or a structure or union declared by its tag.
Following a .union directive, these directives describe the element's size. They do not
allocate memory.

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the union.

138

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Directives That Can Appear in a .union/.endunion Sequence

NOTE: The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.

These examples show unions with and without tags.

Example 1

Example 2

000000

000000

xanpl e
0000 ival
0000 fva
0000 sva

0002 real_len

enpl oyi d
0000-
0000 x
0000 vy
0000 z
0002 size_u

. gl obal enployid

.uni on

.word

.float ;
.string

. enduni on ;

.bss enployid, real _len

.tag xanple ;
ADD enployid.fval, A

ut ag

menber 1
menber 2
menber 3

real _len

int

= fl oat
= string
=2

;allocate nenory

name an

access uni on el enent

; utag
.long . menberl =
.float ; menber2 =
.word ; menber3 =
. enduni on ; real _len

i nstance

| ong

f1 oat

wor d
2

SPRU186V-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Assembler Directives

139

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.usect

Syntax

Description

Examp

le

Reserve Uninitialized Space

symbol .usect "section name", size in bytes|, alignment[, bank offset]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive; both simply reserve space for data and that
space has no contents. However, .usect defines additional sections that can be placed
anywhere in memory, independently of the .bss section.

« The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

» The section name must be enclosed in double quotes. This parameter names the
uninitialized section. A section name can contain a subsection name in the form
section name : subsection name.

* The size in bytes is an expression that defines the number of bytes that are reserved
in section name.

* The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. This boundary indicates the size of the slot
in bytes and must be set to a power of 2.

* The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

Initialized sections directives (.text, .data, and .sect) end the current section and tell the
assembler to begin assembling into another section. A .usect or .bss directive
encountered in the current section is simply assembled, and assembly continues in the
current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

This example uses the .usect directive to define two uninitialized, named sections, varl
and var2. The symbol ptr points to the first byte reserved in the varl section. The symbol
array points to the first byte in a block of 100 bytes reserved in varl, and dflag points to
the first byte in a block of 50 bytes in varl. The symbol vec points to the first byte
reserved in the var2 section.

140

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
Figure 4-8 shows how this example reserves space in two uninitialized sections, varl
and var2.
l khkhkhkhkkhkkhhkhhhhhhhhkkkhkhk*kkkkkkkk*k*x*%x
2 *x Assenbl e into .text section *x
3 EE I I I R R I I R R R I R R R R S S I R R I
4 00000000 .text
5 00000000 008001A0 W A0, Al
6
7 khkhkhkhkkhkhhkhkhhhhhkhkhkhhkkhkkkkkkkkk*k*k*x*%
8 *x Reserve 2 bytes in varl. *x
9 EE R R I R R I R R R I I I R R R S S I R I
10 00000000 ptr .usect "varl", 2
11 00000004 0100004C LDH *+Bl4(ptr), A2 ;ostill in .text
12
13 khkhkhkhkkhkkhhkhkhhhhhhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkk*kkkkkkk*k*k*x*%
14 *x Reserve 100 bytes in varl *x
15 EE I I I I R R R I I R R R I I I R I R R S S I R I I
16 00000002 array .usect "varl", 100
17 00000008 01800128- MK array, A3 ;ostill in .text
18 0000000c 01800068- MVKH array, A3
19
20 IR SRR S S EESEE]
21 > Reserve 50 bytes in varl >
22 khkhkhkhkkhkhhkhkhhhhhhhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkkkkkkkkk*k*x*%x
23 00000066 df | ag .usect "varl",50
24 00000010 02003328- MVK dfl ag, AM4
25 00000014 02000068- MKH df | ag, A4
26
27 EE I R R R I I I I R R R R I I R R R S I R I I I
28 *x Reserve 100 bytes in varl *x
29 IR SRR S S EE]
30 00000000 vec .usect "var2",100
31 00000018 0000002A- MVK vec, BO ;ostill in .text
32 0000001c 0OOOO0OO06A- MKH vec, BO
Figure 4-8. The .usect Directive
Section var1 Section var2
ptr — 2 bytes ptr —
array —»
100 bytes
100 bytes
100 bytes reserved
in var2
dflag —»
50 bytes
152 bytes reserved
in var1
SPRU186V-July 2011 Assembler Directives 141

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.unasg/.undefine

Syntax

Description

var

Syntax

Description

Turn Off Substitution Symbol

.unasg symbol
.undefine symbol

The .unasg and .undefine directives remove the definition of a substitution symbol
created using .asg or .define. The named symbol will removed from the substitution
symbol table from the point of the .undefine or .unasg to the end of the assembly file.

These directives can be used to remove from the assembly environment any C/C++
macros that may cause a problem. See Chapter 12 for more information about using
C/C++ headers in assembly source.

Use Substitution Symbols as Local Variables

.var sym, [, sym,, ..., sym,]

The .var directive allows you to use substitution symbols as local variables within a
macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.

See Chapter 5 for information on macros.

142

Assembler Directives

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

. Chapter 5
I3 TEXAS SPRU186V—July 2011

INSTRUMENTS
Macro Description

The TMS320C6000 assembler supports a macro language that enables you to create your own
instructions. This is especially useful when a program executes a particular task several times. The macro
language lets you:

+ Define your own macros and redefine existing macros

« Simplify long or complicated assembly code

» Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro
* Manipulate strings within a macro

+ Control expansion listing

Topic Page
ST A U £ T o 1Y =T 01 144
ST L= o V1 o Y/ Lo o 1 144
5.3 Macro Parameters/Substitution Symbolsccvieiiiiiiiiiiiiii e 146
ST |V =T 0T I o = =N 151
5.5 Using Conditional ASSembly iN MaCIOS ...ciuiuiuiiiiieiiiieiit i aea e araeaeaeaaas 152
5.6 USING LADEIS IN MACIOS ..uiutititiniiiitititiei ettt e e et s a s s e et e e e a e e et e aanaaeaeaeanans 154
5.7 Producing MeSSages iN MACIOSeueuiuiueueuenananieieeaeeeenenenanrareeeaeeenenenanrnrnaenen 155
5.8 Using Directives to Format the Output LiStINGocoeieiiiiiiiieiiiiiieieeeeeeeeeenes 156
5.9 Using Recursive and NeSted MaCIOS .. .cucuiuiuiuiuieieieieeiieenrnraiereaeaeaerenensnsaranes 157
5.10 MaCro DireCtiVES SUMMAIY ...uuiuiuiueieeinaeetaeteeae e aaaeeae e aaeeaeaeansaeaeaeaeaneneeees 159

SPRU186V-July 2011 Macro Description 143

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Using Macros www.ti.com

5.1

5.2

Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called a substitution symbol, which is used for macro
parameters. See Section 5.3 for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

(a) Macros can be defined at the beginning of a source file or in a copy/include file. See
Section 5.2, Defining Macros, for more information.

(b) Macros can also be defined in a macro library. A macro library is a collection of files in
archive format created by the archiver. Each member of the archive file (macro library)
may contain one macro definition corresponding to the member name. You can access a
macro library by using the .mlib directive. For more information, see Section 5.4.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a
mnemonic in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls
them. During expansion, the assembler passes arguments by variable to the macro
parameters, replaces the macro call statement with the macro definition, then assembles the
source code. By default, the macro expansions are printed in the listing file. You can turn off
expansion listing by using the .mnolist directive. For more information, see Section 5.8.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see Copy Source File);
they can also be defined in a macro library. For more information about macro libraries, see Section 5.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Section 5.9.

A macro definition is a series of source statements in the following format:

macname .macro [parameter,][, ... , parameter,]
model statements or macro directives
[.mexit]
.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

parameter ,, are optional substitution symbols that appear as operands for the .macro directive.

parameter Parameters are discussed in Section 5.3.

144

Macro Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Defining Macros

model statements are instructions or assembler directives that are executed each time the macro is

called.
macro directives are used to control macro expansion.
.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when

error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See Section 5.7 for more information
about macro comments.

Example 5-1 shows the definition, call, and expansion of a macro.

Example 5-1. Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, sadd4, with four parameters:
sadd4 .macro rl,r2,r3,r4

!

! sadd4 r1, r2 ,r3, r4

' rl=r1+7r2+r3 +r4 (saturated)

!

SADD rl,r2,rl
SADD rl,r3,rl
SADD rl,r4,r1
.endm

©oo~NOoOOh~WNPRE

Macro call: The following code calls the sadd4 macro with four arguments:

10
11 00000000 sadd4 A0, Al, A2, A3

Macro expansion: The following code shows the substitution of the macro definition for the macro call. The
assembler substitutes AO, Al, A2, and A3 for the r1, r2, r3, and r4 parameters of sadd4.

1 00000000 00040278 SADD A0, A1, AO
1 00000004 00080278 SADD A0, A2, AO
1 00000008 000C0278 SADD A0, A3, A0
SPRU186V-July 2011 Macro Description 145

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

5.3

Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Section 3.9.8).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Section 5.3.6.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks.

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

Example 5-2 shows the expansion of a macro with varying numbers of arguments.

Example 5-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:

Par s . macro a, b, c
; a = :a:
; b = :b:
; c = :cC:
.endm
Calling the macro:
Par s 100, | abel Par s 100, | abel , x,y
; a = 100 ; a = 100
; b = 1 abel ; b = | abe
; c="" ; C =Xy
Par ns 100, , x Par ns "100, 200, 300", x, y
; a = 100 ; a = 100, 200, 300
; b="" ; b =x
; c =X ; c=Yy
Par s ""Ustring""", x,y
; a = "string"
; b = x
; c=y
146 Macro Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

5.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.
* The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler

reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

.asg["]character string["], substitution symbol

Example 5-3 shows character strings being assigned to substitution symbols.

Example 5-3. The .asg Directive

. asg "A4", RETVAL ; return val ue

* The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

.eval well-defined expression , substitution symbol

Example 5-4 shows arithmetic being performed on substitution symbols.

Example 5-4. The .eval Directive

.asg 1, counter

.loop 100

.word counter

.eval counter + 1,counter
. endl oop

In Example 5-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

SPRU186V—July 2011 Macro Description 147
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

5.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string
value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in Table 5-1, a and b are parameters that represent substitution symbols
or character-string constants. The term string refers to the string value of the parameter. The symbol ch
represents a character constant.

Table 5-1. Substitution Symbol Functions and Return Values

Function

Return Value

$symlen (a)

Length of string a

$symecmp (a,b)

<0Oifa<b;0ifa=b;>0ifa>b

$firstch (a,ch)

Index of the first occurrence of character constant ch in string a

$lastch (a,ch)

Index of the last occurrence of character constant ch in string a

$isdefed (a)

1 if string a is defined in the symbol table
0 if string a is not defined in the symbol table

$ismember (a,b)

Top member of list b is assigned to string a
0 if b is a null string

$iscons (a)

1 if string a is a binary constant

2 if string a is an octal constant

3 if string a is a hexadecimal constant
4 if string a is a character constant

5 if string a is a decimal constant

$isname (a)

1 if string a is a valid symbol name
0 if string a is not a valid symbol name

S$isreg (a) @

1if string a is a valid predefined register name
0 if string a is not a valid predefined register name

@ For more information about predefined register names, see Section 3.9.5.

Example 5-5 shows built-in substitution symbol functions.

Example 5-5. Using Built-In Substitution Symbol Functions

pushx .macro |ist

Push nore than one item
$i smenber renoves the first

.var item

.1 oop

. break ($i smenber (i tem
STW item *Bl15--[1]

. endl oop

.endm

pushx A0, A1, A2, A3

itemin the |ist

list) = 0)

148

Macro Description

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I

TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

5.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 5-6, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 5-6. Recursive Substitution

. asg x",z declare z and assign z = "x"
. asg "z"y declare y and assigny = "z"
. asg "yt X declare x and assign x = "y"
MVKL X, Al

MKH x, Al

MVKL x, Al recursive expansion

MWKH x, Al recursive expansion

5.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol.

The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

Example 5-7 shows how the forced substitution operator is used.

Example 5-7. Using the Forced Substitution Operator

force . macro X
.l oop 8
PORT: x: . set xX*4
.eval x+1, X
. endl oop
.endm

. gl obal portbase

force
PORTO . set 0
PORT1 . set 4
PORT7 . set 28
SPRU186V-July 2011 Macro Description 149

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.
You can access substrings in two ways:
» :symbol (well-defined expression):
This method of subscripting evaluates to a character string with one character.
+ :symbol (well-defined expression ,, well-defined expression ,):

In this method, expression, represents the substring's starting position, and expression, represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the
resulting character string. The index of substring characters begins with 1, not 0.

Example 5-8 and Example 5-9 show built-in substitution symbol functions used with subscripted
substitution symbols.

In Example 5-8, subscripted substitution symbols redefine the STW instruction so that it handles
immediates. In Example 5-9, the subscripted substitution symbol is used to find a substring strg1
beginning at position start in the string strg2. The position of the substring strgl is assigned to the
substitution symbol pos.

Example 5-8. Using Subscripted Substitution Symbols to Redefine an Instruction

storex .macro X
.var tnp
. asg X(1):, tnp
Jif $syncnp(tnp, "A") == 0
STW X, *Al5- - (4)
.el seif $synmcnp(tnmp,"B") == 0
STW X, * Al5- - (4)
.el sei f $i scons(x)
MVK X, AO
STW A0, * A15- - (4)
.el se
. ensg "Bad Macro Paraneter”
.endif
.endm
st or ex 10h

st or ex Al15

150

Macro Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Macro Libraries

Example 5-9. Using Subscripted Substitution Symbols to Find Substrings

substr . macro start, strgl, strg2, pos

.var lenl,len2,i,tnp

Jif $sym en(start) =0
.eval 1,start

.endi f

.eval 0, pos

.eval start,

. eval $synmi en(strgl),lenl

. eval $syni en(strg2), | en2
.1 oop

. break I = (len2 - lenl + 1)
. asg ":strg2(i,lenl):", tnp
i f $syncnp(strgl,tnmp) = 0
.eval i, pos

. break

.el se

. eval I+ 1,i

.endi f

. endl oop

.endm

.asg 0, pos

. asg "arl ar2 ar3 ar4",regs
substr 1, "ar2", regs, pos
.word pos

5.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you can use the .var directive to
define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive
creates temporary substitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

var sym, [,sym,, ... ,sym,]

The .var directive is used in Example 5-8 and Example 5-9.

5.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member name must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library
simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in Define Macro
Library). The syntax is:

] .mlib filename

SPRU186V-July 2011 Macro Description 151

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Using Conditional Assembly in Macros www.ti.com

5.5

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry in the same way it expands other macros. See Section 5.1 for
how the assembler expands macros. You can control the listing of library entry expansions with the .mlist
directive. For more information about the .mlist directive, see Section 5.8 and Start/Stop Macro Expansion
Listing. Only macros that are actually called from the library are extracted, and they are extracted only
once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Section 6.1.

Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[.elseif well-defined expression]
[-else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Conditional Blocks for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

Joop [well-defined expression]
[.break [well-defined expression]]
.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to
be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler
encounters a .break directive with an expression that is true (nonzero). See Assemble Conditional Blocks
Repeatedly for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive.

For more information, see Section 4.7.

Example 5-10, Example 5-11, and Example 5-12 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

152

Macro Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Using Conditional Assembly in Macros

Example 5-10. The .loop/.break/.endloop Directives

. asg 1, x
.1 oop

.break (x == 10) ; if x == 10, quit |oop/break with expression

. eval x+1, X
. endl oop

Example 5-11. Nested Conditional Assembly Directives

.asg 1, X

.1 oop

i f (x ==10) ; if x == 10, quit |oop
.break (x == 10) ; force break

.endif

. eval X+1, X

. endl oop

Example 5-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

MACK3 .macro srcl, src2, sum Kk
!
! dst = dst + k * (srcl * src2)

i f k =0

MPY srcl, src2, src2
NOP

ADD src2, sum sum

. el se

MPY srcl,src2,src2
MK k,srcl
MPY srcl,src2,src2

ADD Src2, sum sum
.endif

.endm

MACK3 A0, Al, A3,0
MACK3 A0, Al, A3, 100

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

Macro Description

153

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Using Labels in Macros

13 TEXAS
INSTRUMENTS

www.ti.com

5.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is
illegal. The macro language provides a method of defining labels in macros so that the labels are unique.
Simply follow each label with a question mark, and the assembler replaces the question mark with a
period followed by a unique number. When the macro is expanded, you do not see the uniqgue number in
the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. The syntax for a unique label is:

label ?

Example 5-13 shows unique label generation in a macro. The maximum label length is shortened to allow
for the unique suffix. For example, if the macro is expanded fewer than 10 times, the maximum label
length is 126 characters. If the macro is expanded from 10 to 99 times, the maximum label length is 125.
The label with its unique suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the
assembler with the --cross_reference option (see Section 3.3).

Example 5-13. Unique Labels in a Macro

O~NO O~ WNBE

©

10
11
12 00000000

00000000 010401A1
00000004 00840AF8
00000008 80000292
0000000c 00008000
00000010 010001A0
00000014

PR RPRRRPPRR

LABEL

. TM5320C60
.t ne320C60
| $1%

mn .macro Xx,Y,z
W Y,z
| CMPLT Xx,V,¥y
[yl B I?
NOP 5
W X, Z
I?
.endm
M N A0, Al, A2
W Al, A2
| CWPLT A0, Al, Al
[A1] B I?
NOP 5
v A0, A2
I?
VALUE DEFN REF
00000001 0
00000001 0
00000014 12 12

154 Macro Description

Copyright © 2011, Texas Instruments Incorporated

SPRU186V-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Producing Messages in Macros

5.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to
problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same
manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same
manner as the .emsg directive but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same
manner as the .emsg directive, but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

Example 5-14 shows user messages in macros and macro comments that do not appear in the macro
expansion.

For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define Messages.

Example 5-14. Producing Messages in a Macro

TEST .macro X,y

This macro checks for the correct nunber of paraneters.
It generates an error nessage if x and y are not present.

|
|
|
|
! The first line tests for proper input.
|

Jif ($symen(x) + ||$symen(y) == 0)

. ensg "ERROR --m ssing paraneter in call to TEST"

. mexit

.el se

.endif
i f

.endif
.endm

SPRU186V-July 2011 Macro Description 155

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Using Directives to Format the Output Listing www.ti.com

5.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

* Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code
encountered in those blocks.
.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.

For macro and loop expansion listing, .mlist is the default.

» False conditional block listing

fclist causes the assembler to include in the listing file all conditional blocks that do not
generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

+ Substitution symbol expansion listing

.sslist expands substitution symbols in the listing. This is useful for debugging the expansion
of substitution symbols. The expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

» Directive listing
drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives are
.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,
.mmsg, .length, .width, and .break.

For directive listing, .drlist is the default.

156 Macro Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Using Recursive and Nested Macros

5.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

Example 5-15 shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

Example 5-15. Using Nested Macros

in_block .macro y,a
. visible paraneters are y,a and x,z fromthe calling nacro
.endm

out _bl ock . macro X,Y,2
; visible paraneters are x,y, z
in_block x,y ; macro call with x and y as arguments
.endm
out _bl ock ; macro call

Example 5-16 shows recursive and fact macros. The fact macro produces assembly code necessary to
calculate the factorial of n, where n is an immediate value. The result is placed in the Al register . The fact
macro accomplishes this by calling factl, which calls itself recursively.

Example 5-16. Using Recursive Macros

.fcnolist

factl .macro n

ifon ==
MK gl obcnt, Al ; Leave the answer in the Al register.
.el se
.eval 1, tenp ; Compute the decrenent of synbol n.
.eval globcnt*tenp, globcnt ; Multiply to get a new result.
factl tenp ; Recursive call.
.endi f
.endm
fact .macro n
.if ! $iscons(n) ; Test that input is a constant.

.enmsg "Parm not a constant"
.elseif n<1 ; Type check i nput.
MK 0, Al
.el se
.var tenp
.asg n, globcnt

factl n ; Performrecursive procedure

.endif
.endm

SPRU186V-July 2011 Macro Description 157

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Using Recursive and Nested Macros www.ti.com
158 Macro Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Macro Directives Summary

5.10 Macro Directives Summary

The directives listed in Table 5-2 through Table 5-6 can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language

directives.

Table 5-2. Creating Macros

See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Section 5.2 .endm
macname .macro [parameter,][,... , parameter,] Define macro by macname Section 5.2 .macro
.mexit Go to .endm Section 5.2 Section 5.2
.mlib filename Identify library containing macro definitions Section 5.4 .mlib
Table 5-3. Manipulating Substitution Symbols
See
Mnemonic and Syntax Description Macro Use Directive
.asg ["]character string["], substitution symbol Assign character string to substitution symbol Section 5.3.1 .asg
.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols ~ Section 5.3.1 .eval
var symg [, sym,, ..., sym,] Define local macro symbols Section 5.3.6 .var
Table 5-4. Conditional Assembly
See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Section 5.5 .break
.endif End conditional assembly Section 5.5 .endif
.endloop End repeatable block assembly Section 5.5 .endloop
.else Optional conditional assembly block Section 5.5 .else
.elseif well-defined expression Optional conditional assembly block Section 5.5 .elseif
.if well-defined expression Begin conditional assembly Section 5.5 if
.loop [well-defined expression] Begin repeatable block assembly Section 5.5 loop
Table 5-5. Producing Assembly-Time Messages
See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output Section 5.7 .emsg
.mmsg Send assembly-time message to standard output Section 5.7 .mmsg
.wmsg Send warning message to standard output Section 5.7 .wmsg
Table 5-6. Formatting the Listing
See
Mnemonic and Syntax Description Macro Use Directive
fclist Allow false conditional code block listing (default) Section 5.8 fclist
fcnolist Suppress false conditional code block listing Section 5.8 fenolist
.mlist Allow macro listings (default) Section 5.8 .mlist
.mnolist Suppress macro listings Section 5.8 .mnolist
.sslist Allow expanded substitution symbol listing Section 5.8 .sslist
.ssnolist Suppress expanded substitution symbol listing (default) Section 5.8 .ssnolist
SPRU186V-July 2011 Macro Description 159

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

160 Macro Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

. Chapter 6
I3 TEXAS SPRU186V—July 2011

INSTRUMENTS

Archiver Description

The TMS320C6000 archiver lets you combine several individual files into a single archive file. For
example, you can collect several macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You can also use the archiver to collect a
group of object files into an object library. The linker includes in the library the members that resolve
external references during the link. The archiver allows you to modify a library by deleting, replacing,
extracting, or adding members.

Topic Page

6.1 AICHIVEI OVEIVIEW .ottt ettt et ettt e e et e et e et e ea e e e e e enns 162

6.2 The Archiver's Role in the Software Development FIOWcccoiiiiiiiiiiiiiiiiiiiinennn. 163

6.3 INVOKING the ArChIVEr ... et a e e ees 164

6.4 ArChIVEr EXAmMpPIES ...ouoiiiiiii ettt e e e e et 165

6.5 Library Information Archiver DESCIIPLION ...cuiuieieiieeiiieeieie e e eaeeeeneaes 166
SPRU186V-July 2011 Archiver Description 161

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Archiver Overview www.ti.com

6.1

Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 5 discusses macros and macro libraries in detail, while this chapter explains how to
use the archiver to build libraries.

162

Archiver Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

The Archiver's Role in the Software Development Flow

6.2 The Archiver's Role in the Software Development Flow

Figure 6-1 shows the archiver's role in the software development process. The shaded portion highlights
the most common archiver development path. Both the assembler and the linker accept libraries as input.

Figure 6-1. The Archiver in the TMS320C6000 Software Development Flow

Macro
source
files

C/IC++
source
files

C/C++

compiler

Assembler
source

Linear
assembly

Assembly

optimizer

Assembly
optimized
file

Library-build
process

Run-time-
support
library

Macro
library Assembler
Object
files
Library of | 4
object
files
Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

Debugging
tools

SPRU186V-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Archiver Description

163

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Archiver

13 TEXAS
INSTRUMENTS

www.ti.com

6.3 Invoking the Archiver

To invoke the archiver, enter:

‘aer [(Jcommand [options] libname [filename, ... filename,]

aréx
[FJcommand

options

libname

filenames

is the command that invokes the archiver.

tells the archiver how to manipulate the existing library members and any specified. A
command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can
use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See Example 6-1 for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing

member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.

replaces the specified members in the library. If you do not specify filenames, the
archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

X extracts the specified files. If you do not specify member names, the archiver
extracts all library members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:

-q (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This option is
valid only with the a, r, and d commands.)

-u replaces library members only if the replacement has a more recent modification
date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

names the archive library to be built or modified. If you do not specify an extension for

libname, the archiver uses the default extension .lib.

names individual files to be manipulated. These files can be existing library members or
new files to be added to the library. When you enter a filename, you must enter a
complete filename including extension, if applicable.

Naming Library Members

NOTE:

It is possible (but not desirable) for a library to contain several members with the same

name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member
with that name.

164 Archiver Description

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I3 TEXAS
INSTRUMENTS
www.ti.com Archiver Examples
6.4 Archiver Examples

The following are examples of typical archiver operations:

« If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,
enter:

ar6x -a function sine.obj cos.obj flt.obj
The archiver responds as follows:

==> new archive 'function.lib'" ==> building new archive 'function.lib'

* You can print a table of contents of function.lib with the -t command, enter:

aréx -t function
The archiver responds as follows:

FI LE NAME SIZE DATE

si ne. obj 300 Wed Jun 14 10: 00: 24 2006
cos. obj 300 Wed Jun 14 10: 00: 30 2006
flt. obj 300 Wed Jun 14 09:59: 56 2006

+ If you want to add new members to the library, enter:

ar6x -as function atan. obj
The archiver responds as follows:

==> synbol defined: '_sin'

==> synbol defined: '_cos’

==> synbol defined: '_tan'

==> synbol defined: '_atan

==> bui I ding archive 'function.lib'
Because this example does not specify an extension for the libname, the archiver adds the files to the
library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the
archiver to list the global symbols that are defined in the library.)

« If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.

ar6x -x macros push.asm
The archiver makes a copy of push.asm and places it in the current directory; it does not remove
push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:

ar6x -r macros push.asm

+ If you want to use a command file, specify the command filename after the -@ command. For

example:
ar 6x - @modul es. cnd
The archiver responds as follows:
==> building archive 'nodules.lib'
Example 6-1 is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is
in the library.
SPRU186V-July 2011 Archiver Description 165

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Library Information Archiver Description

13 TEXAS
INSTRUMENTS

www.ti.com

Example 6-1. Archiver Command File

Command file to replace nenbers of the
modul es library with updated files
Use r conmand and u option:
ru
Specify library nane:
nodul es. lib

List filenanes to be replaced if updated:

al i gn. asm
bss. asm
data. asm
text.asm
sect.asm
clink.asm
copy.asm
doubl e. asm
drnolist.asm
ensg. asm
end. asm

6.5 Library Information Archiver Description

Section 6.1 explains how to use the archiver to create libraries of object files for use in the linker of one or
more applications. You can have multiple versions of the same object file libraries, each built with different
sets of build options. For example, you might have different versions of your object file library for big and
little endian, for different architecture revisions, or for different ABIs depending on the typical build
environments of client applications. Unfortunately, if there are several different versions of your library it
can become cumbersome to keep track of which version of the library needs to be linked in for a particular

application.

When several versions of a single library are available, the library information archiver can be used to
create an index library of all of the object file library versions. This index library is used in the linker in
place of a particular version of your object file library. The linker looks at the build options of the
application being linked, and uses the specified index library to determine which version of your object file
library to include in the linker. If one or more compatible libraries were found in the index library, the most

suitable compatible library is linked in for your application.

6.5.1 Invoking the Library Information Archiver

To invoke the library information archiver, enter:

‘Iibinf06x [options] -o=libname libname, [libname, ... libname,]

libinfo6x is the command that invokes the library information archiver.
options changes the default behavior of the library information archiver. These options are:
-0 libname specifies the name of the index library to create or update. This option is
required.
-u updates any existing information in the index library specified with the -o

option instead of creating a new index.

libnames names individual object file libraries to be manipulated. When you enter a libname, you
must enter a complete filename including extension, if applicable.

166 Archiver Description

Copyright © 2011, Texas Instruments Incorporated

SPRU186V-July 2011
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Library Information Archiver Description

6.5.2 Library Information Archiver Example

Consider these object file libraries that all have the same members, but are built with different build

options:
Object File Library Name Build Options
mylib_6200_be.lib -mv6200 --endian=big
mylib_6200_le.lib -mv6200 --endian=little
mylib_64plus_be.lib -mv64plus --endian=big
mylib_64plus_le.lib -mv64plus --endian=little

Using the library information archiver, you can create an index library called mylib.lib from the above
libraries:

l'ibinfo62 -o nylib.lib nylib_6200_be.lib nylib_6200_le.lib

nylib_64plus_be.lib nylib_64plus_le.lib

You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the
--run_linker option, the linker reports which library was chosen.

Example 1 (ISA 64plus, little endian):

cl 6x -mv64plus --endian=little --issue_remarks main.c -z -1 Ink.cmd ./nylib.lib
<Li nki ng>

remark: linking in "nylib_64plus_le.lib" in place of "nylib.lib"

Example 2 (ISA 6700, big endian):

cl 6x -mv6700 --endi an=big --issue_remarks main.c -z -l Ink.cnd ./nylib.lib

<Li nki ng>

remark: linking in "nylib_6200_be.lib" in place of "nylib.Ilib"

In Example 2, there was no version of the library for C6700, but a C6200 library was available and is
compatible, so it was used.

6.5.3 Listing the Contents of an Index Library

The archiver’s -t option can be used on an index library to list the archives indexed by an index library:
aréx t nylib.lib

SIZE DATE FI LE NAME
119 Wed Feb 03 12:45:22 2010 nylib_6200_be.lib
119 Wed Feb 03 12:45:22 2010 nylib_6200_le.lib
119 Wed Feb 03 12:45:22 2010 nmylib_64plus_be.lib
119 Wed Feb 03 12:45:22 2010 mylib_64plus_le.lib
0 Wed Sep 30 12:45:22 2009 __TI_$$LIBI NFO

The indexed object file libraries have an additional .libinfo extension in the archiver listing. The

TI_$SLIBINFO member is a special member that designates mylib.lib as an index library, rather than a

regular library.

If the archiver’s -d command is used on an index library to delete a .libinfo member, the linker will no
longer choose the corresponding library when the index library is specified.

Using any other archiver option with an index library, or using -d to remove the __ TI_$$LIBINFO member,
results in undefined behavior, and is not supported.

6.5.4 Requirements

You must follow these requirements to use library index files:

.

At least one of the application’s object files must appear on the linker command line before the index
library.

Each object file library specified as input to the library information archiver must only contain object file
members that are built with the same build options.

SPRU186V-July 2011 Archiver Description 167
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Library Information Archiver Description www.ti.com

« The linker expects the index library and all of the libraries it indexes to be in a single directory.

168 Archiver Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 7
/] —{IE)S(’?IgUMENTS SPRU186V—July 2011

Linker Description

The TMS320C6000 linker can be used to create a static executable or dynamic object module by
combining object modules. This chapter describes the linker options, directives, and statements used to
create static executables and dynamic object modules. Object libraries, command files, and other key
concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 2 discusses the object module sections in

detail.

Topic Page
% O 1 1= @AY= YA = PP 170
7.2 The Linker's Role in the Software Development FIOWcccooviiiiiiiiiiiiiiiiiiiiieeeen, 171
7.3 INVOKING the LiNKEr .ouieiiiiii e et et e e et a e e e e e neas 172
A 1 =T G @ o 1 o 173
7.5 Linker Command FilEScueiiiieiiiiiii ettt e e et e e e e e e e e e 195
AL ©] o =T o I o = 1= 229
7.7 Default Allocation AlGOrithm ...t e e e e eees 230
7.8 Linker-Generated Copy Tablesciiiiiiiiiiiiiiii e e e e e e 231
7.9 Partial (Incremental) LinkKing .o.e.ecoiiiiiiiie e et et et e et e e e e e e aaeas 244
4 O T T | o O L@ O o o = 245
A 5 R T 1T G 4= 10] N 248
7.12 Dynamic Linking with the C6000 Code Generation TOOIScccoeveiiiiiiiiiiininienenes 251

SPRU186V-July 2011 Linker Description 169

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

Linker Overview www.ti.com
7.1 Linker Overview

The TMS320C6000 linker allows you to configure system memory by allocating output sections efficiently

into the memory map. As the linker combines object files, it performs the following tasks:

» Allocates sections into the target system's configured memory

* Relocates symbols and sections to assign them to final addresses

» Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address

binding. The language supports expression assignment and evaluation. You configure system memory by

defining and creating a memory model that you design. Two powerful directives, MEMORY and

SECTIONS, allow you to:

» Allocate sections into specific areas of memory

» Combine object file sections

» Define or redefine global symbols at link time
170 Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com The Linker's Role in the Software Development Flow

7.2 The Linker's Role in the Software Development Flow

Figure 7-1 illustrates the linker's role in the software development process. The linker accepts several
types of files as input, including object files, command files, libraries, and partially linked files. The linker
creates an executable object module that can be downloaded to one of several development tools or

executed by a TMS320C6000 device.

Figure 7-1. The Linker in the TMS320C6000 Software Development Flow

C/C++
source
files
Macro
source C/C++ Linear
files compiler assembly

Assembler
source

Assembly

optimizer

Assembly
:\i/é?»g,r; Assembler optimized
file
i : Debugging
Object Library-build
files process
h Run-time-
Library of support
oblect g library
files
Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

SPRU186V-July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Linker Description

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Invoking the Linker www.ti.com

7.3

Invoking the Linker

The general syntax for invoking the linker is:

cl6x --run_linker [options] filename, filename,

cléx --run_linker is the command that invokes the linker. The --run_linker option's short form is

-Z.

options can appear anywhere on the command line or in a link command file. (Options

are discussed in Section 7.4.)

filename 4, filename can be object files, link command files, or archive libraries. The default

extension for all input files is .obj; any other extension must be explicitly
specified. The linker can determine whether the input file is an object or ASCII
file that contains linker commands. The default output flename is a.out, unless
you use the --output_file option to name the output file.

There are two methods for invoking the linker:

Specify options and filenames on the command line. This example links two files, filel.obj and file2.0bj,
and creates an output module named link.out.

cl6x --run_linker filel.obj file2.0obj --output_file=link.out

Put filenames and options in a link command file. Filenames that are specified inside a link command
file must begin with a letter. For example, assume the file linker.cmd contains the following lines:

--output_file=link.out filel.obj file2.obj
Now you can invoke the linker from the command line; specify the command filename as an input file:
cl6x --run_linker 1linker.cnd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:

cl6x --run_linker --map_file=link.map linker.cnd file3. obj

The linker reads and processes a command file as soon as it encounters the filename on the
command line, so it links the files in this order: filel.obj, file2.0bj, and file3.obj. This example creates an
output file called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Section 7.10.

172

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Options

7.4 Linker Options
Linker options control linking operations. They can be placed on the command line or in a command file.
Linker options must be preceded by a hyphen (-). Options can be separated from arguments (if they have
them) by an optional space. Table 7-1 summarizes the linker options.
Table 7-1. Basic Options Summary
Option Alias Description Section
--output_file -0 Names the executable output module. The default filename is a.out. Section 7.4.20
--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 7.4.15
places the listing in filename
--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and Section 7.4.11
defines a global symbol that specifies the heap size. Default = 1K bytes
--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that Section 7.4.26
specifies the stack size. Default = 1K bytes
Table 7-2. Command File Preprocessing Options Summary
Option Alias Description Section
--define Predefines name as a preprocessor macro. Section 7.4.8
--undefine Removes the preprocessor macro name. Section 7.4.8
--disable_pp Disables preprocessing for command files Section 7.4.8
Table 7-3. Diagnostic Options Summary
Option Alias Description Section
--diag_error Categorizes the diagnostic identified by num as an error Section 7.4.5
--diag_remark Categorizes the diagnostic identified by num as a remark Section 7.4.5
--diag_suppress Suppresses the diagnostic identified by num Section 7.4.5
--diag_warning Categorizes the diagnostic identified by num as a warning Section 7.4.5
--display_error_number Displays a diagnostic's identifiers along with its text Section 7.4.5
--issue_remarks Issues remarks (nonserious warnings) Section 7.4.5
--no_demangle Disables demangling of symbol names in diagnostics Section 7.4.17
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 7.4.5
--set_error_limit Sets the error limit to num. The linker abandons linking after this number of Section 7.4.5
errors. (The default is 100.)
--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 7.4.5
--warn_sections -W Displays a message when an undefined output section is created Section 7.4.31
Table 7-4. File Search Path Options Summary
Option Alias Description Section
--library -l Names an archive library or link command filename as linker input Section 7.4.13
--search_path -1 Alters library-search algorithms to look in a directory named with pathname Section 7.4.13.1
before looking in the default location. This option must appear before the
--library option.
--disable_auto_rts Disables the automatic selection of a run-time-support library Section 7.4.6
--priority -priority Satisfies unresolved references by the first library that contains a definition for ~ Section 7.4.13.3
that symbol
--reread_libs -X Forces rereading of libraries, which resolves back references Section 7.4.13.3

173

SPRU186V-July 2011
Submit Documentation Feedback

Linker Description

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options

13 TEXAS

INSTRUMENTS

www.ti.com

Table 7-5. Linker Output Options Summary

Option Alias Description Section
--output_file -0 Names the executable output module. The default filename is a.out. Section 7.4.20
--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 7.4.15
places the listing in filename
--absolute_exe -a Produces an absolute, executable module. This is the default; if neither Section 7.4.2.1
--absolute_exe nor --relocatable is specified, the linker acts as if
--absolute_exe were specified.
--mapfile_contents Controls the information that appears in the map file. Section 7.4.16
--relocatable -r Produces a nonexecutable, relocatable output module Section 7.4.2.2
--rom Create a ROM object
--run_abs -abs Produces an absolute listing file Section 7.4.24
--xml_link_info Generates a well-formed XML file containing detailed information about the Section 7.4.32
result of a link
Table 7-6. Symbol Management Options Summary
Option Alias Description Section
--entry_point -e Defines a global symbol that specifies the primary entry point for the output Section 7.4.9
module
--globalize Changes the symbol linkage to global for symbols that match pattern Section 7.4.14
--hide Hides global symbols that match pattern Section 7.4.12
--localize Changes the symbol linkage to local for symbols that match pattern Section 7.4.14
--make_global -g Makes symbol global (overrides -h) Section 7.4.14.2
--make_static -h Makes all global symbols static Section 7.4.14.1
--no_sym_merge -b Disables merge of symbolic debugging information in COFF object files Section 7.4.18
--no_sym_table -S Strips symbol table information and line number entries from the output Section 7.4.19
module
--retain Retains a list of sections that otherwise would be discarded Section 7.4.23
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 7.4.25
--symbol_map Maps symbol references to a symbol definition of a different name Section 7.4.28
--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 7.4.30
--unhide Reveals (un-hides) global symbols that match pattern Section 7.4.12
Table 7-7. Run-Time Environment Options Summary
Option Alias Description Section
--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and Section 7.4.11
defines a global symbol that specifies the heap size. Default = 1K bytes
--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that Section 7.4.26
specifies the stack size. Default = 1K bytes
--arg_size --args Allocates memory to be used by the loader to pass arguments Section 7.4.3
-fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit Section 7.4.10
constant
--ram_model -cr Initializes variables at load time Section 7.4.22
--rom_model -C Autoinitializes variables at run time Section 7.4.22
--trampolines Generates far call trampolines; on by default Section 7.4.29

174 Linker Description

Copyright © 2011, Texas Instruments Incorporated

SPRU186V-July 2011

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Options

Table 7-8. Link-Time Optimization Options Summary

Option Alias Description Section
--cinit_compression Specifies the type of compression to apply to the c auto initialization data Section 7.4.4
(default is rle)
--compress_dwarf Aggressively reduces the size of DWARF information from input object files
--copy_compression Compresses data copied by linker copy tables Section 7.4.4
--unused_section_elimination Eliminates sections that are not needed in the executable module; on by
default
Table 7-9. Dynamic Linking Options Summary
Option Alias Description Section
--dsbt_index Specifies the Data Segment Base Table (DSBT) index to be assumed for the Section 7.12.5.3
dynamic shared object or dynamic library being linked
--dsbt_size Specifies the number of entries to be reserved for the Data Segment Base Section 7.12.5.3
Table (DSBT)
--dynamic Generates a bare-metal dynamic executable or library (argument is optional; if ~Section 7.12.5.3
no argument is specified, then a dynamic executable (exe) is generated)
--export Exports the specified function symbol (sym) Section 7.12.4.1
--fini Specifies function symbol (sym) of the termination code Section 7.12.5.3
--import Imports the specified symbol Section 7.12.5.1
--init Specifies the function symbol (sym) of the initialization code Section 7.12.5.3
--linux Generates code for Linux Section 7.12.5.3
--pic Generates position independent addressing for a shared object. Default is Section 7.12.5.3
near.
--rpath Adds specified directory to the beginning of the dynamic library search path Section 7.12.5.3
--runpath Adds specified directory to the end of the dynamic library search path Section 7.12.5.3
--shared Generates an ELF dynamically shared object (DSO) Section 7.12.5.3
--soname Specifies the name to be associated with this linked dynamic output; this name Section 7.12.5.3
is stored in the file's dynamic table
--Sysv Generates SysV ELF output file Section 7.12.5.3
Table 7-10. Miscellaneous Options Summary
Option Alias Description Section
--disable_clink - Disables conditional linking of COFF object modules
--linker_help -help Displays information about syntax and available options -

--minimize_trampolines

--preferred_order
--strict_compatibility

--trampoline_min_spacing

--zero_init

Selects the trampoline minimization algorithm (argument is optional; algoriithm Section 7.4.29.3

is postorder by default)

Prioritizes placement of functions

Section 7.4.21

Performs more conservative and rigorous compatibility checking of input object Section 7.4.27

files

When trampoline reservations are spaced more closely than the specified limit, Section 7.4.29.4

tries to make them adjacent

Controls preinitialization of uninitialized variables. Default is on.

Section 7.4.33

SPRU186V-July 2011

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Linker Description 175

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Linker Options www.ti.com
7.4.1 Wild Cards in File, Section, and Symbol Patterns
The linker allows file, section, and symbol hames to be specified using the asterisk (*) and question mark
(?) wild cards. Using * matches any number of characters and using ? matches a single character. Using
wild cards can make it easier to handle related objects, provided they follow a suitable naming convention.
For example:
mp3*. obj /* matches anything .obj that begins with mp3 */
task?. o* /* matches taskl.obj, task2.obj, taskX o055, etc. */
SECTI ONS
{
.fast_code: { *.obj(*fast*) } > FAST_MEM
.vectors : { vectors.obj(.vector:partl:*) > OxFFFFFFOO
.str_code : { rts*.lib<str*.obj>(.text) } > SIROM
}
7.4.2 Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes. The linker supports two options (--absolute_exe and --relocatable) that allow
you to produce an absolute or a relocatable output module. The linker also supports a third option (-ar)
that allows you to produce an executable, relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues a
warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker created it).

7.4.2.1 Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable files contain the
following:

» Special symbols defined by the linker (see Section 7.5.8.4)
* An optional header that describes information such as the program entry point
* No unresolved references

The following example links filel.obj and file2.obj and creates an absolute output module called a.out:
cl 6x --run_linker --absolute_exe filel.obj file2.obj

The --absolute_exe and --relocatable Options

NOTE: If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you
specified --absolute_exe.

7.4.2.2 Producing a Relocatable Output Module (--relocatable option)

When you use the -ar option, the linker retains relocation entries in the output module. If the output
module is relocated (at load time) or relinked (by another linker execution), use --relocatable to retain the
relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the
--absolute_exe option. A file that is not executable does not contain special linker symbols or an optional
header. The file can contain unresolved references, but these references do not prevent creation of an
output module.

This example links filel.obj and file2.0obj and creates a relocatable output module called a.out:
cl6x --run_linker --relocatable filel.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will
be relinked with other files is called partial linking. For more information, see Section 7.9.)

176

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

www.ti.com Linker Options

7.4.2.3 Producing an Executable, Relocatable Output Module (-ar Option)

If you invoke the linker with both the --absolute_exe and --relocatable options, the linker produces an
executable, relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references; however, the relocation information is retained.

This example links filel.obj and file2.obj and creates an executable, relocatable output module called
Xr.out:

cl6x --run_linker -ar filel.obj file2. obj --output_file=xr.out

7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments
from the command line of the loader to the program. The syntax of the --arg_size option is:
--arg_size= size
The size is a number representing the number of bytes to be allocated in target memory for command-line
arguments.
By default, the linker creates the ¢ _args__ symbol and sets it to -1. When you specify --arg_size=size,
the following occur:
* The linker creates an uninitialized section named .args of size bytes.
* The __c_args__ symbol contains the address of the .args section.
The loader and the target boot code use the .args section and the __c_args__ symbol to determine
whether and how to pass arguments from the host to the target program. See the TMS320C6000
Optimizing Compiler User's Guide for information about the loader.

7.4.4 Compression (--cinit_compression and --copy_compression Option)
By default, the linker does not compress data. There are two options that specify compression through the
linker.
The ELF mode --cinit_compression option specifies the compression type the linker applies to the C
autoinitialization data. The default is rle.
Overlays can be managed by using linker-generated copy tables. To save ROM space the linker can
compress the data copied by the copy tables. The compressed data is decompressed during copy. The
--copy_compression option controls the compression of the copy data tables.
The syntax for the options are:
--cinit_compression[=compression_kind]
--copy_compression[=compression_kind]
The compression_kind can be one of the following types:
« off. Don't compress the data.
* rle. Compress data using Run Length Encoding.
* lzss. Compress data using Lempel-Ziv Storer and Symanski compression.

SPRU186V-July 2011 Linker Description 177

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options

13 TEXAS
INSTRUMENTS

www.ti.com

7.4.5 Control Linker Diagnostics

The linker uses certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic
options must be specified before the --run_linker option.

--diag_error=num

--diag_remark=num

--diag_suppress=num

--diag_warning=num

--display_error_number

--issue_remarks
--no_warnings
--set_error_limit=num

--verbose_diagnostics

Categorizes the diagnostic identified by num as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=num to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

Categorizes the diagnostic identified by num as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=num to recategorize
the diagnostic as a remark. You can only alter the severity of discretionary

diagnostics.

Suppresses the diagnostic identified by num. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=num to suppress the
diagnostic. You can only suppress discretionary diagnostics.

Categorizes the diagnostic identified by num as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=num to recategorize
the diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and
--diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the TMS320C6000 Optimizing Compiler User's Guide
for more information on understanding diagnostic messages.

Issues remarks (nonserious warnings), which are suppressed by default.
Suppresses warning diagnostics (errors are still issued).

Sets the error limit to num, which can be any decimal value. The linker
abandons linking after this number of errors. (The default is 100.)

Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

7.4.6 Disable Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support library. See the
TMS320C6000 Optimizing Compiler User's Guide for details on the automatic selection process.

7.4.7 Controlling Unreferenced and Unused Sections

7.4.7.1 Disable Conditional Linking (--disable_clink Option)

The --disable_clink option disables removal of unreferenced sections in COFF object modules. Only
sections marked as candidates for removal with the .clink assembler directive are affected by conditional
linking. See Conditionally Leave Section Out of Object Module Output for details on setting up conditional
linking using the .clink directive, which is available under ELF as well as COFF.

178

Linker Description

SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I

TEXAS
INSTRUMENTS

www.ti.com Linker Options

7.4.7.2 Do Not Remove Unused Sections (--unused_section_elimination Option)

7.4.8

In order to minimize the foot print, the ELF linker does not include a section that is not needed to resolve
any references in the final executable. Use --unused_section_elimination=off to disable this optimization.
The syntax for the option is:

--unused_section_elimination[=on|off]
The linker default behavior is equivalent to --unused_section_elimination=on.

Link Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses link command files using a standard C preprocessor. Therefore, the command
files can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker options are
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For
example:

cl 6x --define=FO0=1 main.c --run_linker --define=BAR=2 | nk.cnd
The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the
usual way (that is, macros defined in the parent are visible in the child). However, when a command file is
invoked other than through #include, either on the command line or by the typical way of being named in
another command file, preprocessing context is not carried into the nested file. The exception to this is
--define and --undefine options, which apply globally from the point they are encountered. For example:

--define GLOBAL
#def i ne LOCAL

#i nclude "incfile.cmd" /* sees GLOBAL and LOCAL */
nestfile.cnd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as
mentioned above. Second, since they are not actually preprocessing directives themselves, they are
subject to macro substitution, probably with unintended consequences. This effect can be defeated by
guoting the symbol name. For example:

--define MYSYM=123

--undefi ne MYSYM /* expands to --undefine 123 (!) */
--undefine "MYSYM /* ahh, that's better */

The linker uses the same search paths to find #include files as it does to find libraries. That is, #include
files are searched in the following places:

1. If the #include file name is in quotes (rather than <brackets>), in the directory of the current file

2. In the list of directories specified with --library options or environment variables (see Section 7.4.13)

There are two exceptions: relative pathnames (such as "../name") always search the current directory; and
absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

The linker has the standard built-in definitions for the macros _ FILE__ , _ DATE_ ,and _ TIME_ . It
does not, however, have the compiler-specific options for the target (__.TMS320C6000__), version
(__TI_COMPILER_VERSION_), run-time model, and so on.

SPRU186V-July 2011 Linker Description 179
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

7.4.9 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads
a program into target memory, the program counter (PC) must be initialized to the entry point; the PC then
points to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in
which the linker tries to use them. If you use one of the first three values, it must be an external symbol in
the symbol table.

* The value specified by the --entry_point option. The syntax is:
--entry_point= global_symbol

where global_symbol defines the entry point and must be defined as an external symbol of the input
files. The external symbol name of C or C++ objects may be different than the name as declared in the
source language; refer to the TMS320C6000 Optimizing Compiler User's Guide.

* The value of symbol _c_int0O0 (if present). The _c_int0O0 symbol must be the entry point if you are
linking code produced by the C compiler.

* The value of symbol _main (if present)
* 0 (default value)

This example links filel.obj and file2.obj. The symbol begin is the entry point; begin must be defined as
external in filel or file2.

cl 6x --run_linker --entry_point=begin filel.obj file2.obj

7.4.10 Set Default Fill Value (--fill_value Option)
The --fill_value option fills the holes formed within output sections. The syntax for the option is:
--fill_value= value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the
linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
cl 6x --run_linker --fill_val ue=OXABCDABCD filel.obj file2. obj

7.4.11 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The syntax
for the --heap_size option is:

--heap_size= size

The size must be a constant. This example defines a 4K byte heap:
cl 6x --run_linker --heap_size=0x1000 /* defines a 4k heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

The linker also creates a global symbol _ SYSMEM_SIZE and assigns it a value equal to the size of the
heap. The default size is 1K bytes.

For more information about C/C++ linking, see Section 7.10.

180 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

7.4.12 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is
used to prevent name space clashes in a link unit, symbol hiding is used to obscure symbols which should
not be visible outside a link unit. Such symbol’s names appear only as empty strings or “no name” in
object file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:
--hide=' pattern'
--unhide=' pattern '

The pattern is a string with optional wildcards ? or *. Use ? to match a single character and use * to match
zero or more characters.

The --hide option hides global symbols which have a linkname matching the pattern. It hides the symbols
matching the pattern by changing the name to an empty string. A global symbol which is hidden is also
localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern
defined by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

* The --hide and --unhide options can be specified more than once on the command line.

» The order of --hide and --unhide has no significance.

* A symbol is matched by only one pattern defined by either --hide or --unhide.

* A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

« ltis an error if a symbol matches patterns from --hide and --unhide and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

* These options affect final and partial linking.
In map files these symbols are listed under the Hidden Symbols heading.

SPRU186V-July 2011 Linker Description 181

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

7.4.13 Alter the Library Search Algorithm (--library Option, --search_path Option, and
C6X_C_DIR Environment Variable)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for
the file in the current directory. For example, suppose the current directory contains the library object.lib.
Assume that this library defines symbols that are referenced in the file filel.obj. This is how you link the
files:

cl 6x --run_linker filel.obj object.lib

If you want to use a file that is not in the current directory, use the --library linker option. The --library
option's short form is -I. The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or link command file. You can specify up to 128
search paths.

The --library option is not required when one or more members of an object library are specified for input
to an output section. For more information about allocating archive members, see Section 7.5.4.5.

You can augment the linker's directory search algorithm by using the --search_path linker option or the
C6X_C_DIR environment variable. The linker searches for object libraries and command files in the
following order:

1. It searches directories named with the --search_path linker option. The --search_path option must
appear before the --library option on the command line or in a command file.

2. It searches directories named with C6X_C_DIR.

3. If C6X_C_DIR is not set, it searches directories named with the assembler's C6X_A_DIR environment
variable.

4. It searches the current directory.

7.4.13.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's
short form is -I . The syntax for this option is:

--search_path= pathname
The pathname names a directory that contains input files.

When the linker is searching for input files named with the --library option, it searches through directories
named with --search_path first. Each --search_path option specifies only one directory, but you can have
several --search_path options per invocation. When you use the --search_path option to name an
alternate directory, it must precede any --library option used on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in Id and 1d2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment
variable, and how to use both libraries during a link. Select the row for your operating system:

Operating System Enter

cl 6x --run_linker f1.0bj f2.0bj --search_path=/1d --search_path=/1d2

UNIX (Bourne shell) --library=r.lib --library=lib2.1ib
cl6x --run_linker fl1.0bj f2.0bj --search_path=\ld --search_path=\1d2
Windows --library=r.lib --library=lib2.1ib
182 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

7.4.13.2 Name an Alternate Library Directory (C6X_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an
environment variable named C6X_C_DIR to nhame alternate directories that contain object libraries. The
command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) C6X_C_DIR=" pathname,; pathname,; . . . "; export C6X_C_DIR
Windows set C6X_C_DIR= pathname, ; pathname, ; . ..

The pathnames are directories that contain input files. Use the --library linker option on the command line
or in a command file to tell the linker which library or link command file to search for. The pathnames must
follow these constraints:

+ Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set C6X_C DIR= c:\path\one\to\tools ; c:\path\tw\to\tools

* Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set C6X_C DIR=c:\first path\to\tools;d:\second path\to\tools

In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and |1d2

directories. The table below shows how to set the environment variable, and how to use both libraries
during a link. Select the row for your operating system:

Operating System Invocation Command
C6X_C DIR="/1d ;/1d2"; export C6X C DR

UNIX (Bourne shell) cl6x --run linker f1.0bj f2.0bj --library=r.lib --library=lib2.1ib
C6X_C DI R=\1d;\1d2

Windows cl6x --run linker f1.0bj f2.0bj --library=r.lib --library=lib2.1ib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset C6X_C DI R
Windows set C6X_C DI R=

The assembler uses an environment variable named C6X_A_DIR to name alternate directories that
contain copy/include files or macro libraries. If C6X_C_DIR is not set, the linker searches for object
libraries in the directories named with C6X_A_DIR. For information about C6X_A_DIR, see Section 3.5.2.
For more information about object libraries, see Section 7.6.

7.4.13.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:
* Reread libraries if you cannot resolve a symbol reference (--reread_libs).
+ Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on
the command line or in the command file. When an archive is read, any members that resolve references
to undefined symbols are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries
until no more references can be resolved. Linking using --reread_libs may be slower, so you should use it
only as needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the
libraries twice, as in:

SPRU186V-July 2011 Linker Description 183

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

cl6x --run_linker --library=a.lib --library=b.lib --library=a.lib

or you can force the linker to do it for you:
cl6x --run_linker --reread_libs --library=a.lib --library=b.lib

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For
example:

objfile references A

libl defines B

lib2 defines A, B; obj defining A references B

% cl 6x --run_linker objfile libl |ib2

Under the existing model, obijfile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under --priority, obijfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rts6200.lib without
providing a full replacement for rts6200.lib. Using --priority and linking your new library before rts6200.lib
guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with DSP/BIOS where situations like the one
illustrated above occur.

7.4.14 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global
symbols in a library which should not be visible outside the library, but must be global because they are
accessed by several modules in the library. The linker supports symbol localization through the --localize
and --globalize linker options.

The syntax for these options are:
--localize="' pattern '
--globalize="' pattern '

The pattern is a string with optional wild cards ? or *. Use ? to match a single character and use * to
match zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The
--globalize option only affects symbols that are localized by the --localize option. The --globalize option
excludes symbols that match the pattern from symbol localization, provided the pattern defined by
--globalize is more restrictive than the pattern defined by --localize.

Specifying C/C++ Symbols with --localize and --globalize

NOTE: For COFF ABI, the compiler prepends an underscore _ to the beginning of all C/C++
identifiers. That is, for a function named foo2(), foo2() is prefixed with _ and _foo2 becomes
the link-time symbol. The --localize and --globalize options accept the link-time symbols.
Thus, you specify --localize="_foo2' to localize the C function _foo2().

For EABI, the link-time symbol is the same as the C/C++ identifier name.

These options have the following properties:

* The --localize and --globalize options can be specified more than once on the command line.
* The order of --localize and --globalize options has no significance.

* A symbol is matched by only one pattern defined by either --localize or --globalize.

184

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

+ A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

« ltis an error if a symbol matches patterns from --localize and --globalize and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

* These options affect final and partial linking.
In map files these symbols are listed under the Localized Symbols heading.

7.4.14.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external
symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to
the module in which they are defined, so no external references are possible. For example, assume
filel.obj and file2.obj both define global symbols called EXT. By using the --make_static option, you can
link these files without conflict. The symbol EXT defined in filel.obj is treated separately from the symbol
EXT defined in file2.obj.

cl 6x --run_linker --make_static filel.obj file2.obj

7.4.14.2 Make a Symbol Global (--make_global Option)

The --make_static option makes all global symbols static. If you have a symbol that you want to remain
global and you use the --make_static option, you can use the --make_global option to declare that symbol
to be global. The --make_global option overrides the effect of the --make_static option for the symbol that
you specify. The syntax for the --make_global option is:

--make_global= global_symbol

7.4.15 Create a Map File (--map_file Option)
The syntax for the --map_file option is:
--map_file= filename

The linker map describes:

* Memory configuration

* Input and output section allocation

* Linker-generated copy tables

* Trampolines

* The addresses of external symbols after they have been relocated

» Hidden and localized symbols

TrLelz map file contains the name of the output module and the entry point; it can also contain up to three
tables:

* A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the link command file:

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

SPRU186V-July 2011 Linker Description 185

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

specifies that the memory can be read.

specifies that the memory can be written to.

specifies that the memory can contain executable code.
specifies that the memory can be initialized.

- Xs®D

For more information about the MEMORY directive, see Section 7.5.3.

» A table showing the linked addresses of each output section and the input sections that make up the
output sections (section allocation map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the link command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.

— Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

— Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 7.5.4.
» A table showing each external symbol and its address sorted by symbol name.
» A table showing each external symbol and its address sorted by symbol address.

This following example links filel.obj and file2.0bj and creates a map file called map.out:
cl6x --run_linker filel.obj file2. obj --map_file=map. out

Example 7-26 shows an example of a map file.

7.4.16 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax
for the --mapfile_contents option is:

--mapfile_contents= filter], filter]

When the --map_file option is specified, the linker produces a map file containing information about
memory usage, placement information about sections that were created during a link, details about
linker-generated copy tables, and symbol values.

The new --mapfile_contents option provides a mechanism for you to control what information is included in
or excluded from a map file. When you specify --mapfile_contents=help from the command line, a help
screen listing available filter options is displayed.

The following filter options are available:

Attribute Description Default State
copytables Copy tables On

entry Entry point On

load_addr Display load addresses Off

memory Memory ranges On

sections Sections On

sym_defs Defined symbols per file Off
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On

all Enables all attributes

none Disables all attributes

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:
--mapfil e_cont ent s=copyt abl es, noentry

--mapfil e_contents=al |, nocopyt abl es

--mapfil e_contents=none, entry

SPRU186V-July 2011 Linker Description 187
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

By default, those sections that are currently included in the map file when the --map_file option is specified
are included. The filters specified in the --mapfile_contents options are processed in the order that they
appear in the command line. In the third example above, the first filter, none, clears all map file content.
The second filter, entry, then enables information about entry points to be included in the generated map
file. That is, when --mapfile_contents=none,entry is specified, the map file contains only information about
entry points.

There are two new filters included with the --mapfile_contents option, load_addr and sym_defs. These are
both disabled by default. If you turn on the load_addr filter, the map file includes the load address of
symbols that are included in the symbol list in addition to the run address (if the load address is different
from the run address).

The sym_defs filter can be used to include information about all static and global symbols defined in an
application on a file by file basis. You may find it useful to replace the sym_name and sym_runaddr
sections of the map file with the sym_defs section by specifying the following --mapfile_contents option:

--mapfil e_cont ent s=nosym nane, nosym r unaddr, sym def s

7.4.17 Disable Name Demangling (--no_demangle)

By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.obj

The --no_demangle option disables the demangling of symbol names in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.obj

7.4.18 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)

By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:

-[header.h |-
typedef struct

{
<define sone structure nenbers>
} XYz

-[fl.¢c]-
#i ncl ude "header.h"

-[f2.¢]-
#i ncl ude "header. h"

When these files are compiled for debugging, both f1.obj and f2.0bj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker
eliminates the duplicate entries automatically.

Use the COFF only --no_sym_merge option if you want the linker to keep such duplicate entries in COFF
object files. Using the --no_sym_merge option has the effect of the linker running faster and using less
host memory during linking, but the resulting executable file may be very large due to duplicated debug
information.

188

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I

TEXAS
INSTRUMENTS

www.ti.com Linker Options

7.4.19 Strip Symbolic Information (--no_sym_table Option)

The --no_sym_table option creates a smaller output module by omitting symbol table information and line
number entries. The --no_sym_table option is useful for production applications when you do not want to
disclose symbolic information to the consumer.

This example links filel.obj and file2.0bj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:

cl 6x --run_linker --output_file=nosymout --no_symtable filel.obj file2.obj

Using the --no_sym_table option limits later use of a symbolic debugger.

Stripping Symbolic Information

NOTE: The --no_sym_table option is deprecated. To remove symbol table information, use the
strip6x utility as described in Section 10.4.

7.4.20 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for
the output module, the linker gives it the default name a.out. If you want to write the output module to a
different file, use the --output_file option. The syntax for the --output_file option is:

--output_file= filename
The filename is the new output module name.

This example links filel.obj and file2.0bj and creates an output module named run.out:
cl 6x --run_linker --output_file=run.out filel.obj file2.obj

7.4.21 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which
--preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

Refer to the TMS320C6000 Optimizing Compiler User's Guide for details on the program cache layout tool
which is impacted most by --preferred_option.

7.4.22 C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the linker to use linking conventions that are required by
the C compiler.

+ The --ram_model option tells the linker to initialize variables at load time.
* The --rom_model option tells the linker to autoinitialize variables at run time.

For more information, see Section 7.10, Section 7.10.4, and Section 7.10.5.

SPRU186V-July 2011 Linker Description 189
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

7.4.23 Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final link if it is
not needed in the executable to resolve references. The --retain option tells the linker to retain a list of
sections that would otherwise not be retained. This option accepts the wildcards *' and '?". When
wildcards are used, the argument should be in quotes. The syntax for this option is:
--retain=sym_or_scn_spec
The --retain option take one of the following forms:
* --retain=symbol_spec
Specifying the symbol format retains sections that define symbol_spec. For example, this code retains
sections that define symbols that start with init:
--retain="init*'
You cannot specify --retain="*",
+ --retain=file_spec(scn_spec|, scn_spec, ...]
Specifying the file format retains sections that match one or more scn_spec from files matching the
file_spec. For example, this code retains .initvec sections from all input files:
--retain="init*’
You can specify --retain="(*)' to retain all sections from all input files. However, this does not prevent
sections from library members from being optimized out.
* --retain=ar_spec<mem_spec, [mem_spec, ...>(scn_spec][, scn_spec, ...]
Specifying the archive format retains sections matching one or more scn_spec from members
matching one or more mem_spec from archive files matching ar_spec. For example, this code retains
the .text sections from printf.obj in the rts64plus_eabi.lib library:
--retai n=rts64pl us_eabi.lib<printf.obj>(.text)

If the library is specified with the --library option (--library=rts64plus_eabi.lib) the library search path is
used to search for the library. You cannot specify *<*>(*)".

7.4.24 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

7.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols
defined in COMDAT sections. The --scan_libraries option helps determine those symbols that were
actually chosen by the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to
a definition when multiple definitions are available in the libraries.

7.4.26 Define Stack Size (--stack_size Option)

The TMS320C6000 C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time
stack. You can set the size of this section in bytes at link time with the --stack_size option. The syntax for
the --stack_size option is:

--stack_size= size

The size must be a constant and is in bytes. This example defines a 4K byte stack:
cl 6x --run_linker --stack_size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

190

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

When the linker defines the .stack section, it also defines a global symbol, STACK_SIZE, and assigns it
a value equal to the size of the section. The default software stack size is 1K bytes.

7.4.27 Enforce Strict Compatibility (--strict_compatibility Option)

The linker performs more conservative and rigorous compatibility checking of input object files when you
specify the --strict_compatibility option. Using this option guards against additional potential compatibility
issues, but may signal false compatibility errors when linking in object files built with an older toolset, or
with object files built with another compiler vendor's toolset. To avoid issues with legacy libraries, the
--strict_compatibility option is turned off by default.

7.4.28 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name. Symbol
mapping allows functions to be overridden with alternate definitions. This feature can be used to patch in
alternate implementations, which provide patches (bug fixes) or alternate functionality. The syntax for the
--symbol_map option is:

--symbol_map= refname=defname
For example, the following code makes the linker resolve any references to foo by the definition

foo_patch:
--synbol _map='f oo=f oo_pat ch’

7.4.29 Generate Far Call Trampolines (--trampolines Option)

The C6000 device has PC-relative call and PC-relative branch instructions whose range is smaller than
the entire address space. When these instructions are used, the destination address must be near enough
to the instruction that the difference between the call and the destination fits in the available encoding bits.
If the called function is too far away from the calling function, the linker generates an error.

The alternative to a PC-relative call is an absolute call, which is often implemented as an indirect call: load
the called address into a register, and call that register. This is often undesirable because it takes more
instructions (speed- and size-wise) and requires an extra register to contain the address.

By default, the compiler generates near calls. The --trampolines option causes the linker to generate a
trampoline code section for each call that is linked out-of-range of its called destination. The trampoline
code section contains a sequence of instructions that performs a transparent long branch to the original
called address. Each calling instruction that is out-of-range from the called function is redirected to the
trampoline.

For example, in a section of C code the bar function calls the foo function. The compiler generates this
code for the function:

bar:

call foo ; call the function "foo"

If the foo function is placed out-of-range from the call to foo that is inside of bar, then with --trampolines
the linker changes the original call to foo into a call to foo_trampoline as shown:

bar :

cal | foo_tranpoline ; call a tranpoline for foo

The above code generates a trampoline code section called foo_trampoline, which contains code that
executes a long branch to the original called function, foo. For example:

foo_tranpoline:
branch_l ong f oo

Trampolines can be shared among calls to the same called function. The only requirement is that all calls
to the called function be linked near the called function's trampoline.

The syntax for this option is:

SPRU186V-July 2011 Linker Description 191

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

--trampolines[=on|off]
The default setting is on. For C6000, trampolines are turned on by default.

When the linker produces a map file (the --map_file option) and it has produced one or more trampolines,
then the map file will contain statistics about what trampolines were generated to reach which functions. A
list of calls for each trampoline is also provided in the map file.

The Linker Assumes B15 Contains the Stack Pointer

NOTE: Assembly language programmers must be aware that the linker assumes B15 contains the
stack pointer. The linker must save and restore values on the stack in trampoline code that it
generates. If you do not use B15 as the stack pointer, you should use the linker option that
disables trampolines, --trampolines=off. Otherwise, trampolines could corrupt memory and
overwrite register values.

7.4.29.1 Carrying Trampolines From Load Space to Run Space

It is sometimes useful to load code in one location in memory and run it in another. The linker provides the
capability to specify separate load and run allocations for a section. The burden of actually copying the
code from the load space to the run space is left to you.

A copy function must be executed before the real function can be executed in its run space. To facilitate
this copy function, the assembler provides the .label directive, which allows you to define a load-time
address. These load-time addresses can then be used to determine the start address and size of the code
to be copied. However, this mechanism will not work if the code contains a call that requires a trampoline
to reach its called function. This is because the trampoline code is generated at link time, after the
load-time addresses associated with the .label directive have been defined. If the linker detects the
definition of a .label symbol in an input section that contains a trampoline call, then a warning is
generated.

To solve this problem, you can use the START(), END(), and SIZE() operators (see Section 7.5.8.7).
These operators allow you to define symbols to represent the load-time start address and size inside the
link command file. These symbols can be referenced by the copy code, and their values are not resolved
until link time, after the trampoline sections have been allocated.

Here is an example of how you could use the START() and SIZE() operators in association with an output
section to copy the trampoline code section along with the code containing the calls that need trampolines:
SECTI ONS
{ .foo : load = ROM run = RAM start(foo_start), size(foo_size)

{ x.obj(.text) }

.text: {} > ROM

far @ { -l=rts.lib(.text) } > FAR_ MEM
}

A function in x.obj contains an run-time-support call. The run-time-support library is placed in far memory
and so the call is out-of-range. A trampoline section will be added to the .foo output section by the linker.
The copy code can refer to the symbols foo_start and foo_size as parameters for the load start address
and size of the entire .foo output section. This allows the copy code to copy the trampoline section along
with the original x.obj code in .text from its load space to its run space.

7.4.29.2 Disadvantages of Using Trampolines

An alternative method to creating a trampoline code section for a call that cannot reach its called function
is to actually modify the source code for the call. In some cases this can be done without affecting the size
of the code. However, in general, this approach is extremely difficult, especially when the size of the code
is affected by the transformation.

192

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

While generating far call trampolines provides a more straightforward solution, trampolines have the
disadvantage that they are somewhat slower than directly calling a function. They require both a call and a
branch. Additionally, while inline code could be tailored to the environment of the call, trampolines are
generated in a more general manner, and may be slightly less efficient than inline code.

7.4.29.3 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)

The --minimize_trampolines option attempts to place sections so as to minimize the number of far call
trampolines required, possibly at the expense of optimal memory packing. The syntax is:

--minimize_trampolines=postorder

The argument selects a heuristic to use. The postorder heuristic attempts to place functions before their
callers, so that the PC-relative offset to the callee is known when the caller is placed.

When a call is placed and the callee's address is unknown, the linker must provisionally reserve space for
a far call trampoline in case the callee turns out to be too far away. Even if the callee ends up being close
enough, the trampoline reservation can interfere with optimal placement for very large code sections. By
placing the callee first, its address is known when the caller is placed so the linker can definitively know if
a trampoline is required.

7.4.29.4 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)

When trampoline reservations are spaced more closely than the specified limit, use the
--trampoline_min_spacing option to try to make them adjacent. The syntax is:

--trampoline_min_spacing=size

A higher value minimizes fragmentation, but may result in more trampolines. A lower value may reduce
trampolines, at the expense of fragmentation and linker running time. Specifying O for this option disables
coalescing. The default is 16K.

7.4.30 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table.
This forces the linker to search a library and include the member that defines the symbol. The linker must
encounter the --undef_sym option before it links in the member that defines the symbol. The syntax for the
--undef_sym option is:

--undef_sym= symbol

For example, suppose a library named rts6200.lib contains a member that defines the symbol symtab;
none of the object files being linked reference symtab. However, suppose you plan to relink the output
module and you want to include the library member that defines symtab in this link. Using the --undef_sym
option as shown below forces the linker to search rts6200.lib for the member that defines symtab and to
link in the member.

cl 6x --run_linker --undef_symrsyntab filel.obj file2.0obj rts6200.1ib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
filel.obj or file2.0bj.

7.4.31 Display a Message When an Undefined Output Section Is Created (--warn_sections
Option)

In a link command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the linker combines the input
sections that have the same name into an output section with that name. By default, the linker does not
display a message to tell you that this occurred.

You can use the --warn_sections option to cause the linker to display a message when it creates a new
output section.

For more information about the SECTIONS directive, see Section 7.5.4. For more information about the
default actions of the linker, see Section 7.7.

SPRU186V-July 2011 Linker Description 193

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

7.4.32 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the

result of a link. The information included in this file includes all of the information that is currently produced
in a linker generated map file.

See Appendix B for specifics on the contents of the generated XML file.

7.4.33 Zero Initialization (--zero_init Option)

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before program
execution. The C/C++ EABI compiler supports preinitialization of uninitialized variables by default. This

can be turned off by specifying the linker option --zero_init=off. COFF ABI does not support zero
initialization.

The syntax for the --zero_init option is:
--zero_init[={on|off}]

194 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

7.5

Linker Command Files

Linker command files allow you to put linking information in a file; this is useful when you invoke the linker
often with the same information. Linker command files are also useful because they allow you to use the
MEMORY and SECTIONS directives to customize your application. You must use these directives in a
command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

* Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The linker does not return from called command files.)

« Linker options, which can be used in the command file in the same manner that they are used on the
command line

* The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Section 7.5.3). The SECTIONS directive controls how sections are built and
allocated (see Section 7.5.4.)

« Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the cléx --run_linker command and follow it with the name
of the command file:

cl6x --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an
object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

Example 7-1 shows a sample link command file called link.cmd.

Example 7-1. Linker Command File

a. obj
b. obj

/* First input filename */
/* Second input filenanme */

--out put _fil e=prog. out /* Option to specify output file */
--map_fil e=prog. map /* Option to specify map file */

The sample file in Example 7-1 contains only filenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

cl 6x --run_linker link.cnd

You can place other parameters on the command line when you use a command file:
cl6x --run_linker --relocatable link.cnd c.obj d.obj

The linker processes the command file as soon as it encounters the filename, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called names.Ist that contains
filenames and another file called dir.cmd that contains linker directives, you could enter:

cl 6x --run_linker nanes.lst dir.cnd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command
file calls another command file as input, this statement must be the last statement in the calling command
file.

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the
format of linker directives in a command file. Example 7-2 shows a sample command file that contains
linker directives.

SPRU186V-July 2011 Linker Description 195
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Example 7-2. Command File With Linker Directives

a.obj b.obj c.obj /* I'nput filenanes */
--out put _fil e=prog. out /* Options */
--map_fil e=prog. map

MEMORY /* MEMORY directive */
{
FAST_MEM origin = 0x0100 I ength = 0x0100
SLOWMEM origin = 0x7000 | ength = 0x1000
}
SECTI ONS /* SECTIONS directive */

{
.text: > SLOWMEM
.data: > SLOW MEM
. bss: > FAST_MEM

}

For more information, see Section 7.5.3 for the MEMORY directive, and Section 7.5.4 for the SECTIONS
directive.
7.5.1 Reserved Names in Linker Command Files

The following names (in lowercase also) are reserved as keywords for linker directives. Do not use them
as symbol or section names in a command file.

ALIGN FILL LOAD_SIZE PAGE START

ATTR GROUP LOAD_START PALIGN TABLE
BLOCK HIGH MEMORY RUN TYPE
COMPRESSION | (lowercase L) NOINIT RUN_END UNION

COPY len NOLOAD RUN_SIZE UNORDERED
DSECT LENGTH 0 RUN_START

END LOAD org SECTIONS

f LOAD_END ORIGIN SIZE

7.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants used in the assembler (see Section 3.7) or the scheme used for integer
constants in C syntax.

Examples:
Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20
196 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

7.5.3 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
linker maintains the model as it allocates output sections and uses it to determine which memory locations
can be used for object code.

The memory configurations of TMS320C6000 systems differ from application to application. The
MEMORY directive allows you to specify a variety of configurations. After you use MEMORY to define a
memory model, you can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see Section 2.3 and Section 2.4.

7.5.3.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the
TMS320C6000 architecture. This model assumes that the full 32-bit address space (2*? locations) is
present in the system and available for use. For more information about the default memory model, see
Section 7.7.

7.5.3.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

* Name
» Starting address
* Length

+ Optional set of attributes
* Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for loading
code. Memory defined by the MEMORY directive is configured; any memory that you do not explicitly
account for with MEMORY is unconfigured. The linker does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not including an address
range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in Example 7-3 defines a
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external
memory at address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000. It also
demonstrates the use of memory range expressions as well as start/end/size address operators (see
Section 7.5.3.3)

Example 7-3. The MEMORY Directive

/**/

/* Sanpl e command file with MEMORY directive */
/**/
filel.obj file2.obj /* Input files */
--out put _fil e=prog. out /* Opti ons */

#def i ne BUFFER 0

MEMORY
{
FAST_MEM (RX): origin = 0x00000000 | ength = 0x00001000 + BUFFER
SLOVMEM (RW: origin = end(FAST_MEM |ength = 0x00001800 - size(FAST_MEM
EXT_MEM (RX): origin = 0x10000000 I ength = size(FAST_MEM
SPRU186V-July 2011 Linker Description 197

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS
Linker Command Files www.ti.com
The general syntax for the MEMORY directive is:
MEMORY
{
name 1 [(attr)] : origin = expression , length = expression [, fill = constant]
name n [(attr)] : origin = expression , length = expression [, fill = constant]
}
name names a memory range. A memory name can be one to 64 characters; valid characters

include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

attr specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin, org, or 0. The value,
specified in bytes, is an expression of 32-bit constants, which can be decimal, octal, or
hexadecimal.

length specifies the length of a memory range; enter as length, len, or I. The value, specified in
bytes, is an expression of 32-bit constants, which can be decimal, octal, or hexadecimal.
fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value

is a integer constant and can be decimal, octal, or hexadecimal. The fill value is used to fill
areas of the memory range that are not allocated to a section.

Filling Memory Ranges

NOTE: If you specify fill values for large memory ranges, your output file will be very large because
filling a memory range (even with 0s) causes raw data to be generated for all unallocated
blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
OFFFFFFFFh:

MEMORY
{

}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control allocation
of output sections. After you use MEMORY to specify the target system's memory model, you can use
SECTIONS to allocate output sections into specific named memory ranges or into memory that has
specific attributes. For example, you could allocate the .text and .data sections into the area named
FAST_MEM and allocate the .bss section into the area named SLOW_MEM.

RFILE (RW : o = 0x00000020, | = 0x00001000, f = OxFFFFFFFF

198

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

7.5.3.3 Expressions and Address Operators
Memory range origin and length can now use expressions of integer constants with below operators:
Binary operators: *[% + - << >> == =

<<= >>= & | && ||
Unary operators: -~

Expressions are evaluated using standard C operator precedence rules.

No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer
type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot
be used in Memory Directive expressions.

Three new address operators have been added for referencing memory range properties from prior
memory range entries:

START(MR) Returns start address for previously defined memory range MR.
SIZE(MR) Returns size of previously defined memory range MR.
END(MR) Returns end address for previously defined memory range MR.

Example 7-4. Origin and Length as Expressions

AR R AR E R EEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY)

/* Sanmpl e command file with MEMORY directive */
/**/
filel.obj file2.obj /* Input files */
--out put _fil e=prog. out /* Opti ons */

#define ORIG N 0x00000000
#def i ne BUFFER 0x00000200
#defi ne CACHE 0x0001000

MEMORY

{
FAST_MEM (RX): origin
SLONV MEM (RW: origin
EXT_MEM (RX): origin

ORIA N + CACHE | ength
end(FAST_MEM | ength
0x10000000 I ength

0x00001000 + BUFFER
0x00001800 - si ze(FAST_MEM
si ze(FAST_MEM) - CACHE

7.5.4 The SECTIONS Directive

The SECTIONS directive controls your sections in the following ways:
» Describes how input sections are combined into output sections
+ Defines output sections in the executable program

* Specifies where output sections are placed in memory (in relation to each other and to the entire
memory space)

* Permits renaming of output sections

For more information, see Section 2.3, Section 2.4, and Section 2.2.4. Subsections allow you to
manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Section 7.7 describes this algorithm in detail.
7.5.4.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by
a list of output section specifications enclosed in braces.

SPRU186V-July 2011 Linker Description 199

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

The general syntax for the SECTIONS directive is:

SECTIONS

{

}

name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

Each section specification, beginning with name, defines an output section. (An output section is a section
in the output file.) A section name can be a subsection specification. (See Section 7.5.4.4 for information
on multi-level subsections.) After the section name is a list of properties that define the section's contents
and how the section is allocated. The properties can be separated by optional commas. Possible
properties for a section are as follows:

Load allocation defines where in memory the section is to be loaded.

Syntax: load = allocation or
allocation or
> allocation

Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

Input sections defines the input sections (object files) that constitute the output section.
Syntax: { input_sections }

Section type defines flags for special section types. See Section 7.5.7
Syntax: type = COPY or

type = DSECT or

type = NOLOAD

Fill value defines the value used to fill uninitialized holes. See Section 7.5.9.
Syntax: fill = value or
name : [properties = value]

Example 7-5 shows a SECTIONS directive in a sample link command file.

Example 7-5. The SECTIONS Directive

AR R E R R R R R R R LY

/* Sanple command file with SECTIONS directive */

/**/

filel. obj file2. obj /* Input files */
--output_fil e=prog. out /* Options */
SECTI ONS
{

.text: load = EXT_MEM run = 0x00000800

.const: | oad = FAST_MEM

. bss: | oad = SLOW MEM

.vectors: | oad = 0x00000000

{

t1.obj(.intvecl)
t2.0bj (.intvec2)
endvec = .;

200

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

Example 7-5. The SECTIONS Directive (continued)

.data: al pha: align
align

. dat a: bet a:

16
16

Figure 7-2 shows the six output sections defined by the SECTIONS directive in Example 7-5 (.vectors,
text, .const, .bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory
using the MEMORY directive given in Example 7-3.

Figure 7-2. Section Allocation Defined by Example 7-5

0x00000000 FAST MEM
.vectors
.const

0x00001000
SLOW_MEM
.bss
.data:alpha
.data:beta

0x00001800

0x10000000

EXT_MEM

text

0x10001000

OxFFFFFFFF

7.5.4.2 Allocation

- Bound at 0x00000000

- Allocated in FAST_MEM

- Allocated in SLOW_MEM

- Aligned on 16-byte
boundary

- Aligned on 16-byte
boundary

- Empty range of memory
as defined in above

- Allocated in EXT_MEM

- Empty range of memory
as defined in above

The .vectors section is composed of the .intvec1
section from t1.o0bj and the .intvec2 section from
t2.0bj.

The .const section combines the .const sections
from file1.obj and file2.0bj.

The .bss section combines the .bss sections from
file1.obj and file2.ob;j.

The .data:alpha subsection combines the .data:al-
pha subsections from file1.obj and file2.obj. The
.data:beta subsection combines the .data:beta
subsections from file1.o0bj and file2.obj. The linker
places the subsections anywhere there is space for
them (in SLOW_MEM in this illustration) and aligns
each on a 16-byte boundary.

The .text section combines the .text sections from
file1.0bj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0x00000800.

The linker assigns each output section two locations in target memory: the location where the section will
be loaded and the location where it will be run. Usually, these are the same, and you can think of each

section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called allocation. For more information about using separate load and run

allocation, see Section 7.5.5.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to allocate the
section. Generally, the linker puts sections wherever they fit into configured memory. You can override this
default allocation for a section by defining it within a SECTIONS directive and providing instructions on
how to allocate it.

You control allocation by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run allocation are separate, all parameters following the keyword LOAD apply to load allocation,
and those following the keyword RUN apply to run allocation. The allocation parameters are:

SPRU186V-July 2011

Submit Documentation Feedback

Linker Description 201

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Binding allocates a section at a specific address.
.text: load = 0x1000

Named memory allocates the section into a range defined in the MEMORY directive with the specified

name (like SLOW_MEM) or attributes.
.text: load > SLON MEM

Alignment uses the align or palign keyword to specify that the section must start on an address
boundary.
.text: align = 0x100

Blocking uses the block keyword to specify that the section must fit between two address

boundaries: if the section is too big, it starts on an address boundary.
.text: bl ock(0x100)

For the load (usually the only) allocation, you can simply use a greater-than sign and omit the load
keyword:

.text: > SLOW MEM
.text: {...} > SLON.MEM
.text: > 0x4000
If more than one parameter is used, you can string them together as follows:
.text: > SLOWMEM align 16

Or if you prefer, use parentheses for readability:
.text: load = (SLOW MEM al i gn(16))

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. See Section 7.5.4.3.

7.5.4.2.1 Binding

You can supply a specific starting address for an output section by following the section name with an
address:

.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues
an error message.

Binding is Incompatible With Alignment and Named Memory

NOTE: You cannot bind a section to an address if you use alignment or named memaory. If you try
to do this, the linker issues an error message.

7.5.4.2.2 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Section 7.5.3). This example names ranges and links sections into them:

MEMORY
SLOW MEM (RI X) : origin = 0x00000000, |ength = 0x00001000
FAST_MEM (RWX) : origin = 0x03000000, I|ength = 0x00000300
}
SECTI ONS
{
Ltext > SLOW MEM
.data > FAST_MEM ALI G\(128)
. bss : > FAST_MEM
202 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

I

www.ti.com

TEXAS
INSTRUMENTS

Linker Command Files

}

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:

SECTI ONS

{
text: > (X /* .text --> executable nenory */
.data: > (RI) /* .data --> read or init nmenory */
.bss : > (RW /* .bss -->read or wite menory */

}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and | attributes. The .bss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific
address, use binding instead of named memory.

7.5.4.2.3 Controlling Allocation Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the linker to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration.

For example, given this MEMORY directive:

MEMORY
{
RAM origin = 0x0200, |ength = 0x0800
FLASH origin = 0x1100, |ength = OxEEEOQ
VECTORS origin = OxFFEO, |ength = 0x001E
RESET origin = OXFFFE, |ength = 0x0002
}
and an accompanying SECTIONS directive:
SECTI ONS
{
. bss {} > RAM
. sysnem {} > RAM
. stack {} > RAM (H GH)

}

The HIGH specifier used on the .stack section allocation causes the linker to attempt to allocate .stack into
the higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated into
the lower addresses within RAM. Example 7-6 illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

Example 7-6. Linker Allocation With the HIGH Specifier

. bss 0 00000200
00000200
0000031a
000003a2
0000041a
00000460
00000468
0000046¢
0000046e

00000270
0000011a
00000088
00000078
00000046
00000008
00000004
00000002
00000002

UNI NI TI ALI ZED
rtsxxx.lib

defs.obj (.bss)

: trgdrv.obj (.bss)
| owl ev. obj (. bss)
exit.obj (.bss)
menory. obj (.bss)
_lock.obj (.bss)
f open. obj (.bss)

hell 0. obj (.bs

s)

SPRU186V-July 2011
Submit Documentation Feedback

Linker Description

Copyright © 2011, Texas Instruments Incorporated

203

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Example 7-6. Linker Allocation With the HIGH Specifier (continued)

. sysmem 0 00000470 00000120 UNI NI TI ALI ZED

00000470 00000004 rtsxxx .lib : menory.obj (.sysnen
.stack 0 000008c0 00000140 UNI NI TI ALI ZED

000008c0 00000002 rtsxxx .lib : boot.obj (.stack)

As shown in Example 7-6 , the .bss and .sysmem sections are allocated at the lower addresses of RAM
(0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses
are available.

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 7-7

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>
operator).

Example 7-7. Linker Allocation Without HIGH Specifier

. bss 0 00000200 00000270 UNI NI TI ALI ZED
00000200 0000011a rtsxxx.lib : defs.obj (.bss)
0000031a 00000088 : trgdrv.obj (.bss)
000003a2 00000078 : low ev.obj (.bss)
0000041a 00000046 : exit.obj (.bss)
00000460 00000008 : nenory.obj (.bss)
00000468 00000004 . _lock.obj (.bss)
0000046¢ 00000002 . fopen.obj (.bss)
0000046e 00000002 hel | 0. obj (. bss)

.stack 0 00000470 00000140 UNI NI TI ALI ZED
00000470 00000002 rtsxxx.lib : boot.obj (.stack)

.sysmem 0 000005b0 00000120 UNI NI TI ALI ZED
000005b0 00000004 rtsxxx.lib : menory.obj (.sysnen)

7.5.4.2.4 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n
is a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls
on a 32-byte boundary:

.text: load = align(32)

You can specify the same alignment with the palign keyword. In addition, palign ensures the section's size
is a multiple of its placement alignment restrictions, padding the section size up to such a boundary, as
needed.

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The
specified block size must be a power of 2. For example, the following code allocates .bss so that the entire
section is contained in a single 128-byte page or begins on that boundary:

bss: | oad = bl ock(0x0080)

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and
blocking cannot be used together.

204

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

7.5.4.2.5 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size
of the section is a multiple of its placement alignment restrictions, padding the section size up to such a
boundary, as needed.

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area. The .text
section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

.text: palign(2) {} > PMEM

.text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By
default, padding space is filled with a value of 0 (zero). However, if a fill value is specified for the output
section then any padding for the section is also filled with that fill value.

For example, consider the following section specification:
.nytext: palign(8), fill = Oxffffffff {} > PMEM

In this example, the length of the .mytext section is 6 bytes before the palign operator is applied. The
contents of .mytext are as follows:

addr content

0000 0x1234
0002 0x1234
0004 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 Oxffff

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has
been filled with Oxff.

The fill value specified in the linker command file is interpreted as a 16-bit constant, so if you specify this
code:

.mytext: palign(8), fill = Oxff {} > PVMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 Oxffff
0008 0xO00f f
000a 0xOO0f f

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to
increase the section's size to the next power of two boundary. In addition, the section is aligned on that
power of 2 as well.
For example, consider the following section specification:
.nytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After
applying the palign(power2) operator, the .mytext output section will have the following properties:

name addr si ze align

SPRU186V-July 2011 Linker Description 205

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

Linker Command Files www.ti.com
. myt ext 0x00010080 0x80 128

206 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

7.5.4.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output
section. In general, the linker combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:

» All aligned sections, from largest to smallest
» All blocked sections, from largest to smallest
» All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.
Example 7-8 shows the most common type of section specification; note that no input sections are listed.

Example 7-8. The Most Common Method of Specifying Section Contents

SECTI ONS
{

.text:
. dat a:
. bss:

In Example 7-8, the linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters them in the
input files. The linker performs similar operations with the .data and .bss sections. You can use this type of
specification for any output section.

You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name:

SECTI ONS
{
.text /* Build .text output section */
{
f1.0bj(.text) /* Link .text section fromf1. obj */
f2. obj (secl) /* Link secl section fromf2.obj */
f 3. obj /* Link ALL sections from f3. obj */

f4.0bj(.text,sec2) /* Link .text and sec2 from f4. obj */

}
}

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections,all of its sections are included in the output section. If any
additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the
linker found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the linker would concatenate these extra sections after f4.obj(sec2).

The specifications in Example 7-8 are actually a shorthand method for the following:

SECTI ONS

{
Ltext: { *(.text) }

.data: { *(.data) }
.bss: { *(.bss) }
}

The specification *(.text) means the unallocated .text sections from all the input files. This format is useful
when:

* You want the output section to contain all input sections that have a specified name, but the output
section name is different from the input sections' name.

SPRU186V-July 2011 Linker Description 207

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

* You want the linker to allocate the input sections before it processes additional input sections or
commands within the braces.

208 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

The following example illustrates the two purposes above:

SECTI ONS
{
text 0 {
abc. obj (xqt)
*(.text)
}
.data : {

*(.data)
fil.obj(table)

}

In this example, the .text output section contains a named section xqt from file abc.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a named
section table from the file fil.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the linker encountered
*(.text), the linker could not include that first .text input section in the second output section.

7.5.4.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated
by colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a link
command file specifying a base name, such as A, selects the section A as well as any subsections of A,
such as A:B or A:C:D.

A name such as A:B can be used to specify a (sub)section of that name as well as any (multi-level)
subsections beginning with that name, such as A:B:C, A:B:OTHER, etc. All the subsections of A:B are
also subsections of A. A and A:B are supersections of A:B:C. Among a group of supersections of a
subsection, the nearest supersection is the supersection with the longest name. Thus, among {A, A:B} the
nearest supersection of A:B:C:D is A:B.

With multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section
of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same
name or in the nearest existing supersection of such an output section. An exception to this rule is that
during a partial link (specified by the --relocatable linker option) a subsection is allocated only to an
existing output section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta

europe:north:iceland

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTI ONS {
nordic: {*(europe:north)
(europe:central :denmark)} / the nordic countries */

central: {*(europe:central)} /* france, gernmany */
therest: {*(europe)} /* spain, italy, malta */
}
SPRU186V-July 2011 Linker Description 209

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTI ONS {
i sl ands: {*(europe:south:malta)
(europe:north:iceland)} / malta, iceland */

europe:north:finland : {} /* finland */
europe: north {} /* norway, sweden */
eur ope: central {} /* germany, denmark */
europe: central : france: {} /* france */

/* (italy, spain) go into a |inker-generated output section "europe" */

Upward Compatibility of Multi-Level Subsections

NOTE: Existing linker commands that use the existing single-level subsection features and which
do not contain section names containing multiple colon characters continue to behave as
before. However, if section names in a link command file or in the input sections supplied to
the linker contain multiple colon characters, some change in behavior could be possible. You
should carefully consider the impact of the new rules for multiple levels to see if it affects a
particular system link.

7.5.4.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section.
Consider this SECTIONS directive:

Example 7-9. Archive Members to Output Sections

SECTI ONS
{
boot > BOOT1
{
-l =rtsXX. i b<boot.obj> (.text)
-l=rtsXX. lib<exit.obj strcpy.obj> (.text)
}
.rts > BOOT2
{
-l=rtsXX. lib (.text)
}
. text > RAM
{
* (.text)
}
}

In Example 7-9, the .text sections of boot.obj, exit.obj, and strcpy.obj are extracted from the
run-time-support library and placed in the .boot output section. The remainder of the run-time-support
library object that is referenced is allocated to the .rts output section. Finally, the remainder of all other
.text sections are to be placed in section .text.

An archive member or a list of members is specified by surrounding the member name(s) with angle
brackets < and > after the library name. Any object files separated by commas or spaces from the
specified archive file are legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file following the
option) listed before each library in Example 7-9 is optional when listing specific archive members inside <
>. Using < > implies that you are referring to a library.

210

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

To collect a set of the input sections from a library in one place, use the --library option within the
SECTIONS directive. For example, the following collects all the .text sections from rts6200.lib into the
.rtstest section:

SECTI ONS

{

}

.rtstest { -1=rts6200.lib(.text) } > RAM

SECTIONS Directive Effect on --priority

NOTE: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the linker searches to resolve references. If you use the --priority option, the first
library specified in the command file will be searched first.

7.5.4.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be
allocated. Consider the following example:

MEMORY

{
P_MEML : origin = 0x02000, |ength = 0x01000
P_MEM2 : origin = 0x04000, Iength = 0x01000
P_MEMB : origin = 0x06000, Iength = 0x01000
P_MEMA : origin = 0x08000, |ength = 0x01000

}

SECTI ONS

{

.text : {} >P MEML | P_MEMR | P_MEMA
}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a
whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the linker first tries to allocate the section in P_MEML1. If that attempt fails, the linker tries
to place the section into P_MEMZ2, and so on. If the output section is not successfully allocated in any of
the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the link command file, you can let the linker move the section into one of the other areas.

7.5.4.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges to achieve an efficient allocation. Use
the >> operator to indicate that an output section can be split, if necessary, into the specified memory
ranges. For example:

MEMORY
P_MEML : origin = 0x2000, Ilength = 0x1000
P_MEMR : origin = 0x4000, Ilength = 0x1000
P_MEMB : origin = 0x6000, |ength = 0x1000
P_ MEMA : origin = 0x8000, Ilength = 0x1000

}

SECTI ONS

{
.text: { *(.text) } > P_MEML | P_MEMR | P_MEMB | P_MEMA

}

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input
section boundary, and the remainder of the output section is allocated to P MEM2 | P_MEMS3 | P_MEMA4.

SPRU186V—July 2011 Linker Description 211

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS

INSTRUMENTS

Linker Command Files www.ti.com
The | operator is used to specify the list of multiple memory ranges.

212 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:

MEMORY

{

}

SECTI ONS

{
.special: { fl.obj(.text) } load = 0x4000
text: { *(.text) } >> RAM

}

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 0x1000 to 0x4000, and from the end of f1.obj(.text) to 0x8000. The
specification for the .text section allows the linker to split the .text section around the .special section and
use the available space in RAM on either side of .special.

RAM : origin = 0x1000, Iength = 0x8000

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY

{
P_MEML (RAK) : origin = 0x1000, Iength = 0x2000
P_MEM2 (RW) : origin = 0x4000, Iength = 0x1000

text: { *(.text) } >> (RW
}

The linker attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTI ONS

{
.text: { *(.text) } > P_MEML | P_MEMR}

}

Certain sections should not be split:

« Certain sections created by the compiler, including
— The .cinit section, which contains the autoinitialization table for C/C++ programs
— The .pinit section, which contains the list of global constructors for C++ programs
— The .bss section, which defines global variables

+ An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

» The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)
If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

SPRU186V-July 2011 Linker Description 213

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

7.5.5 Specifying a Section's Run-Time Address

At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
linker to allocate a section twice: once to set its load address and again to set its run address. For
example:

.fir: load = SLONMEM run = FAST_MEM
Use the load keyword for the load address and the run keyword for the run address.
See Section 2.5 for an overview on run-time relocation.

7.5.5.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. The application must copy the section from its load
address to its run address; this does not happen automatically when you specify a separate run address.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see
Section 7.5.6.1.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.
The examples below specify load and run addresses:

.data: load = SLOWMEM align = 32, run = FAST_MEM

(align applies only to load)
.data: load = (SLOWMEM align 32), run = FAST_MEM

(identical to previous example)

FAST_MEM align 32,
align 16

.data: run
| oad

(align 32 in FAST_MEM for run; align 16 anywhere for load)

7.5.5.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address.
The linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker
warns you and ignores the load address. Otherwise, if you specify only one address, the linker treats it as
a run address, regardless of whether you call it load or run. This example specifies load and run
addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .bss section is allocated in FAST_MEM.
.bss: load = FAST_MEM

.bss: run = FAST_MEM
.bss: > FAST_MEM

214 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

7.5.5.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its run-time address. However, it may be
necessary at run time to refer to a load-time address. Specifically, the code that copies a section from its
load address to its run address must have access to the load address. The .label directive defines a
special symbol that refers to the section's load address. Thus, whereas normal symbols are relocated with
respect to the run address, .label symbols are relocated with respect to the load address. See Create a
Load-Time Address Label for more information on the .label directive.

Example 7-10 and Example 7-11 show the use of the .label directive to copy a section from its load
address in SLOW_MEM to its run address in FAST_MEM. Figure 7-3 illustrates the run-time execution of
Example 7-10.

Example 7-10. Copying Section Assembly Language File

.sect ".fir"
.align 4
.label fir_src
fir
; insert code here
.label fir_end
.text
MVKL fir_src, A
MKH fir_src, A4
MVKL fir_end, A5
M/KH fir_end, A5
MVKL fir, A6
MVKH fir, A6
SUB A5, A4, Al
| oop:
[TA1] B done
LDW *Ad+ +, B3
NOP 4
branch occurs
STW B3, *A6+ +
SUB Al, 4, Al
B | oop
NOP 5
; branch occurs
done:
B fir
NOP 5

; call occurs

Example 7-11. Linker Command File for Example 7-10

/**/

/* PARTI AL LI NKER COMVAND FI LE FOR FI R EXAMPLE */

/**/

MEMORY
{
FAST_MEM : origin = 0x00001000, Iength = 0x00001000
SLOWMEM : origin = 0x10000000, |ength = 0x00001000
}
SECTI ONS
{
SPRU186V-July 2011 Linker Description 215

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Example 7-11. Linker Command File for Example 7-10 (continued)

.text: load
.fir: load

FAST_MEM
SLOWMEM run FAST_MEM

Figure 7-3. Run-Time Execution of Example 7-10

0x00000000
FAST_MEM
text
| fir (relocated |
I torunhere)
L _
0x00001000
0x10000000
SLOW_MEM
l- --------- h)
: fir (loads here) |
| I 3
0x10001000
OXFFFFFFFF

7.5.6 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and UNION. Unioning sections
causes the linker to allocate them to the same run address. Grouping sections causes the linker to
allocate them contiguously in memory. Section names can refer to sections, subsections, or archive library
members.

7.5.6.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to occupy the same address
during run time. For example, you may have several routines you want in fast external memory at various
stages of execution. Or you may want several data objects that are not active at the same time to share a
block of memory. The UNION statement within the SECTIONS directive provides a way to allocate several
sections at the same run-time address.

In Example 7-12, the .bss sections from filel.obj and file2.0bj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 7-12. The UNION Statement

{

SECTI ONS
.text: load = SLON MEM
UNION: run = FAST_MEM

{
.bss:partl: { filel.obj(.bss) }

.bss:part2: { file2.0obj(.bss) }

.bss:part3: run = FAST_MEM { gl obal s. obj (. bss) }

216

Linker Description SPRU186V-July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 7-13.

Example 7-13. Separate Load Addresses for UNION Sections

UNI ON run = FAST_MEM
{
.text:partl: |oad
.text:part2: |oad

SLOVMEM { filel.obj(.text) }
SLOWMEM { file2.0bj(.text) }

Figure 7-4. Memory Allocation Shown in Example 7-12 and Example 7-13

FAST_MEM Sections can run FAST_MEM
as a union. This ;
) C t
.bss:part2 |/7 is run-time alloca- text 2 (run) |'\ ru?]ptlieznfea
bss:part1 tion only. text 1 (run)
W
.bss:part3 .bss:part3
SLOW_MEM SLOW_MEM
text . text 1 (load)
Sections cannot
load as a union t\
text 2 (load)

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a
union. Therefore, each requires its own load address. If you fail to provide a load allocation for an
initialized section within a UNION, the linker issues a warning and allocates load space anywhere it can in
configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load
address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
linker issues a warning and ignores the load address.

SPRU186V—July 2011 Linker Description 217
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

7.5.6.2 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously. For
example, assume that a section named term_rec contains a termination record for a table in the .data
section. You can force the linker to allocate .data and term_rec together:

Example 7-14. Allocate Sections Together

SECTI ONS

{
.text /* Normal output section */
. bss /* Normal output section */

GROUP 0x00001000 : /* Specify a group of sections */
{

.data /* First section in the group */
termrec /* Allocated imedi ately after .data */

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data
is allocated at 0x1000, and term_rec follows it in memory.

You Cannot Specify Addresses for Sections Within a GROUP

NOTE: When you use the GROUP option, binding, alignment, or allocation into named memory can
be specified for the group only. You cannot use binding, named memory, or alignment for
sections within a group.

7.5.6.3 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
Example 7-15 shows how two overlays can be grouped together.

Example 7-15. Nesting GROUP and UNION Statements

SECTI ONS

{
GROUP 0x1000 : run = FAST_MEM

{

UNI ON:
{
nysect1l: |oad = SLON MEM
nysect2: |oad = SLOW MEM
}
UNI ON:
{
mysect3: | oad = SLOW MEM
nysect4: |oad = SLON MEM

For this example, the linker performs the following allocations:

* The four sections (mysectl, mysect2, mysect3, mysect4) are assigned unigue, non-overlapping load
addresses. The name you defined with the .label directive is used in the SLOW_MEM memory region.
This assignment is determined by the particular load allocations given for each section.

218 Linker Description SPRU186V—July 2011

Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

.
3

To

Sections mysectl and mysect2 are assigned the same run address in FAST_MEM.
Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

The run addresses of mysectl/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).

refer to groups and unions, linker diagnostic messages use the notation:

GROUP_n UNION_n

Int

his notation, n is a sequential number (beginning at 1) that represents the lexical ordering of the group

or union in the linker control file, without regard to nesting. Groups and unions each have their own
counter.

7.5.6.4 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections.
The following rules are used:

.

Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The linker uses the run address of the top-level
structure to compute the run addresses of the components within groups and unions.

The linker does not accept a load allocation for UNIONSs.
The linker does not accept a load allocation for uninitialized sections.

In most cases, you must provide a load allocation for an initialized section. However, the linker does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

— The group is initialized (that is, it has at least one initialized member).
— The group is not nested inside another group that has a load allocator.
— The group does not contain a union containing initialized sections.

If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:

SECTI ONS

{
GROUP: | oad = SLOWMEM run = SLOW MEM
{

.text1:

UNI ON:

{
.text2:
.text3:

}

}
}

The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that
these load allocations be specified explicitly.

SPRU186V-July 2011 Linker Description 219
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

7.5.6.5 Naming UNIONs and GROUPs

You can give a hame to a UNION or GROUP by entering the name in parentheses after the declaration.
For example:

GROUP(BSS_SYSMEM_STACK_GROUP)

{
. bss {}
.sysmem : {}
.stack :{}

} load=D_MEM run=D_MEM

The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:
war ni ng: LOAD pl acenent ignored for "BSS_SYSMEM STACK GROUP": object is uninitialized

UNI ON(TEXT_CI NI T_UNI ON)
{
.const :{}load=D_MEM tabl e(tabl el)
.pinit :{}l oad=D_MEM tabl e(tablel)
} run=P_MEM

war ni ng: tabl e(tabl el) operator ignored: table(tablel) has already been applied to a section
inthe "UNON(TEXT_CINIT_UNION)" in which ".pinit" is a descendant

7.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

You can assign three special types to output sections: DSECT, COPY, and NOLOAD. These types affect

the way that the program is treated when it is linked and loaded. You can assign a type to a section by

placing the type after the section definition. For example:

SECTI ONS
{
secl: | oad = 0x00002000, type = DSECT {fl.o0bj}
sec2: | oad = 0x00004000, type = COPY {f2.0bj}
sec3: | oad = 0x00006000, type = NOLOAD {f3.o0bj}
sec4: | oad = 0x00008000, type = NONT {f4.obj}

}

+ The DSECT type creates a dummy section with the following characteristics:

— ltis notincluded in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.

— It can overlay other output sections, other DSECTSs, and unconfigured memory.

— Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

— Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

— The section's contents, relocation information, and line number information are not placed in the
output module.

In the preceding example, none of the sections from fl1.obj are allocated, but all the symbols are

relocated as though the sections were linked at address 0x2000. The other sections can refer to any of

the global symbols in secl.

* A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the TMS320C6000
C/C++ compiler has this attribute under the run-time initialization model.

A NOLOAD section differs from a normal output section in one respect: the section's content